首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   14篇
电工技术   3篇
化学工业   58篇
金属工艺   5篇
机械仪表   3篇
建筑科学   3篇
能源动力   9篇
轻工业   8篇
石油天然气   1篇
无线电   20篇
一般工业技术   29篇
冶金工业   20篇
原子能技术   2篇
自动化技术   11篇
  2023年   3篇
  2022年   10篇
  2021年   17篇
  2020年   2篇
  2019年   8篇
  2018年   15篇
  2017年   7篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   11篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1979年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
21.
A nanocrystalline Cu-Sn alloy film was processed by electroplating, and the indentation tests and microstructural observation were conducted on the electroplated Cu-Sn alloy film. The indentation tests at room temperature showed that a large amount of strain was recovered on unloading for the electroplated Cu-Sn alloy film, in contract, such a large reversible strain was not found in an electroplated pure Cu film. Thus, the electroplated Cu-Sn alloy film exhibited superelastic behavior. The grain size of the Cu-Sn alloy film was 99 nm. In spite of the very small grain size, the austenite start and finish temperatures of the Cu-Sn alloy film were relatively high. This is suggested to be related to the presence of the α-Cu phase.  相似文献   
22.
Large scale synthesis and delamination of 2D Mo2CT x (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary transition metal carbide Mo2Ga2C. Different synthesis and delamination routes result in different flake morphologies. The resistivity of free‐standing Mo2CT x films increases by an order of magnitude as the temperature is reduced from 300 to 10 K, suggesting semiconductor‐like behavior of this MXene, in contrast to Ti3C2T x which exhibits metallic behavior. At 10 K, the magnetoresistance is positive. Additionally, changes in electronic transport are observed upon annealing of the films. When 2 μm thick films are tested as electrodes in supercapacitors, capacitances as high as 700 F cm?3 in a 1 m sulfuric acid electrolyte and high capacity retention for at least 10,000 cycles at 10 A g?1 are obtained. Free‐standing Mo2CT x films, with ≈8 wt% carbon nanotubes, perform well when tested as an electrode material for Li‐ions, especially at high rates. At 20 and 131 C cycling rates, stable reversible capacities of 250 and 76 mAh g?1, respectively, are achieved for over 1000 cycles.  相似文献   
23.
Interleukin (IL) 23 (p19/p40) plays a critical role in the pathogenesis of psoriasis and is upregulated in psoriasis skin lesions. In clinical practice, anti-IL-23Ap19 antibodies are highly effective against psoriasis. IL-39 (p19/ Epstein-Barr virus-induced (EBI) 3), a newly discovered cytokine in 2015, shares the p19 subunit with IL-23. Anti-IL-23Ap19 antibodies may bind to IL-39; also, the cytokine may contribute to the pathogenesis of psoriasis. To investigate IL23Ap19- and/or EBI3-including cytokines in psoriatic keratinocytes, we analyzed IL-23Ap19 and EBI3 expressions in psoriasis skin lesions, using immunohistochemistry and normal human epidermal keratinocytes (NHEKs) stimulated with inflammatory cytokines, using quantitative real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and liquid chromatography-electrospray tandem mass spectrometry (LC-Ms/Ms). Immunohistochemical analysis showed that IL-23Ap19 and EBI3 expressions were upregulated in the psoriasis skin lesions. In vitro, these expressions were synergistically induced by the triple combination of tumor necrosis factor (TNF)-α, IL-17A, and interferon (IFN)-γ, and suppressed by dexamethasone, vitamin D3, and acitretin. In ELISA and LC-Ms/Ms analyses, keratinocyte-derived IL-23Ap19 and EBI3, but not heterodimeric forms, were detected with humanized anti-IL-23Ap19 monoclonal antibodies, tildrakizumab, and anti-EBI3 antibodies, respectively. Psoriatic keratinocytes may express IL-23Ap19 and EBI3 proteins in a monomer or homopolymer, such as homodimer or homotrimer.  相似文献   
24.
At present,the planning for the conservation or development of Japanese traditional crafts is based on administrative districts or water catch ment areas. However, the conservation of Japanese traditions relies not only on the access to relevant natural resources but also on artisans' ability to manufacture crafts in specific environments.The perspectives of artisans on their work environments have a significant influence on traditional crafts.In this study, we aimed to investigate the changes in natural resource use in a village recognized for Koishiwara-yaki-style pottery.We employed a questionnaire and conducted interview surveys to collect data on the perceptions of the artisans working in the said village.The findings were as follows.1)The area commonly regarded by the artisans as their place for pottery was identified. The identification of areas that aresignificant to local tradition can serve as a vital contribution to spatial planning.2)The birth place of the local ceramics tradition in a local water catchment area was regarded as critically important in the preservation of the traditions of the village. 3) Several potters emphasized the value of their work environment to veradministrative support because of the historical connection between the place and their traditions. Highlighting this connection can attract historical and cultural tourism to this area.  相似文献   
25.
This paper focuses on numerically analyzing the thermal transport phenomena in the transient conjugate problem of melting and laminar film condensation. The key focus is to identify an optimum container aspect ratio/shape and conditions for which the heat storage time and the storage capacity are minimum and maximum respectively. Since most solid–liquid phase change materials (PCMs) suffer from poor thermal conductivities, the major resistance to heat transfer comes from PCM. Hence, high thermal conductivity, low-cost metal foam is suggested for use along with PCM to minimize this resistance. The conjugate transient problem of film condensation driven solid–liquid phase change of PCM impregnated inside porous metal foam is numerically analyzed. An effective heat capacity formulation is employed for modeling the transient PCM phase change in porous foam and is solved using finite element method. It is coupled with laminar film condensation on the outside of the storage container. The model is then used for selecting the best aspect ratio for thermal energy storage (TES) containers that enables to store comparatively the maximum heat. The results of the developed model showed that the major resistance to heat transfer and hence efficient thermal energy storage depends strongly on the aspect ratio of the PCM storage containers.  相似文献   
26.
27.
In this paper, a new approach for characterizing dispersion in nano-enhanced polymers and polymer composites using nanomechanical characterization is developed. Dispersion of Carbon nanofibers (CNFs) as a model nanoscale ingredient is characterized in two model polymer systems: (a) a thermoplastic polymer processed using a Twin Screw Extruder, and (b) a thermoset epoxy processed using sonication during solvent processing. For the first time, the modulus of agglomerated nanofibers was isolated from the polymer matrix enhanced with dispersed nanofibers by using nanomechanical characterization. Thus, it was possible to use these nanomechanical properties in a microstructural model using a Rule-of-Mixtures (ROM) formulation to determine the fraction of dispersed nanofibers, which yielded a dispersion limit of 3 vol% CNFs in the nano-enhanced thermoplastic polymer and 3.5 vol% CNFs in the nano-enhanced thermoset epoxy. It was also possible to predict the modulus measured using microtensile testing, and to determine an effective modulus of 30 GPa for the CNFs, which was attributed to a spring-like effect from kinking along the nanofibers. Applying this characterization to control of dispersion through sonication in the nano-enhanced thermoset epoxy, it was possible to determine the degree of dispersion with sonication time which was described using an Avrami equation. Finally, a carbon-fiber mat was used to create a model nano-enhanced polymer composite whose properties were found to be insensitive to sonication time due to filtering effects from the carbon-fiber mat and varied with CNF concentration in a manner where the CNF modulus could be extrapolated to 30 GPa, consistent with the nano-enhanced polymers.  相似文献   
28.
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (ΔT) calculated by solidification simulation based on Scheil model. ΔT increased with increasing content of alloying elements such as niobium. The distribution of ΔT was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in ΔT and the segregation behavior of niobium with the chemical composition.  相似文献   
29.
An environmental cell for high-temperature, high-resolution transmission electron microscopy of nanomaterials in near atmospheric pressures is developed. The developed environmental cell is a side-entry type with built-in specimen-heating element and micropressure gauge. The relationship between the cell condition and the quality of the transmission electron microscopic (TEM) image and the diffraction pattern was examined experimentally and theoretically. By using the cell consisting of two electron-transparent silicon nitride thin films as the window material, the gas pressure inside the environmental cell is continuously controlled from 10(-5)?Pa to the atmospheric pressure in a high-vacuum TEM specimen chamber. TEM image resolutions of 0.23 and 0.31?nm were obtained using 15-nm-thick silicon nitride film windows with the pressure inside the cell being around 5?×?10(-5) and 1?×?10(4)?Pa, respectively.  相似文献   
30.
The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号