首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5530篇
  免费   140篇
  国内免费   14篇
电工技术   131篇
综合类   6篇
化学工业   1095篇
金属工艺   138篇
机械仪表   97篇
建筑科学   139篇
矿业工程   27篇
能源动力   239篇
轻工业   289篇
水利工程   21篇
石油天然气   18篇
无线电   728篇
一般工业技术   1071篇
冶金工业   862篇
原子能技术   39篇
自动化技术   784篇
  2023年   48篇
  2022年   81篇
  2021年   123篇
  2020年   106篇
  2019年   104篇
  2018年   138篇
  2017年   134篇
  2016年   113篇
  2015年   91篇
  2014年   128篇
  2013年   354篇
  2012年   196篇
  2011年   260篇
  2010年   211篇
  2009年   212篇
  2008年   229篇
  2007年   191篇
  2006年   188篇
  2005年   185篇
  2004年   147篇
  2003年   130篇
  2002年   112篇
  2001年   112篇
  2000年   87篇
  1999年   97篇
  1998年   220篇
  1997年   161篇
  1996年   111篇
  1995年   80篇
  1994年   112篇
  1993年   106篇
  1992年   88篇
  1991年   67篇
  1990年   60篇
  1989年   48篇
  1988年   62篇
  1987年   54篇
  1986年   52篇
  1985年   73篇
  1984年   58篇
  1983年   48篇
  1982年   39篇
  1981年   49篇
  1980年   41篇
  1979年   38篇
  1978年   36篇
  1977年   45篇
  1976年   46篇
  1974年   33篇
  1973年   35篇
排序方式: 共有5684条查询结果,搜索用时 15 毫秒
81.
In this article, a genetic evolutionary algorithm is proposed for efficient allocation of wavelength converters in WDM optical networks. Since wavelength converters are expensive, it is desirable that each node in WDM optical networks uses a minimum number of wavelength converters to achieve a near-ideal performance. The searching capability of genetic evolutionary algorithm has been exploited for this purpose. The distinguished feature of the proposed approach lies in handling the conflicting circumstances during allocation of wavelength converters considering various practical aspects (e.g., spatial problem, connectivity of a node with other nodes) rather than arbitrarily to possibly improve the overall blocking performance of WDM optical networks. The proposed algorithm is compared with a previous approach to establish its effectiveness and the results demonstrate the ability of the proposed algorithm to efficiently solve the problem of Optimal Wavelength Converters Allocation (OWCA) in practical WDM optical networks.
Mrinal K. NaskarEmail:
  相似文献   
82.
High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2–5)×10−3 and μτh≈(3–5)×10−5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ∼3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.  相似文献   
83.
Power consumption in datapath modules due to redundant switching is an important design concern for high-performance applications. Operand isolation schemes that reduce this redundant switching incur considerable overhead in terms of delay, power, and area. This paper presents novel operand isolation techniques based on supply gating that reduce overheads associated with isolating circuitry. The proposed schemes also target leakage minimization and additional operand isolation at the internal logic of datapath to further reduce power consumption. We integrate the proposed techniques and power/delay models to develop a synthesis flow for low-power datapath synthesis. Simulation results show that the proposed operand isolation techniques achieve at least 40% reduction in power consumption compared to original circuit with minimal area overhead (5%) and delay penalty (0.15%)  相似文献   
84.
Dual-Vt design technique has proven to be extremely effective in reducing subthreshold leakage in both active and standby mode of operation of a circuit in submicrometer technologies. However, aggressive scaling of technology results in different leakage components (subthreshold, gate and junction tunneling) to become significant portion of total power dissipation in CMOS circuits. High-Vt devices are expected to have high junction tunneling current (due to stronger halo doping) compared to low-Vt devices, which in the worst case can increase the total leakage in dual-Vt design. Moreover, process parameter variations (and in turn Vt variations) are expected to be significantly high in sub-50-nm technology regime, which can severely affect the yield. In this paper, we propose a device aware simultaneous sizing and dual-Vt design methodology that considers each component of leakage and the impact of process variation (on both delay and leakage power) to minimize the total leakage while ensuring a target yield. Our results show that conventional dual-Vt design can overestimate leakage savings by 36% while incurring 17% average yield loss in 50-nm predictive technology. The proposed scheme results in 10%-20% extra leakage power savings compared to conventional dual-Vt design, while ensuring target yield. This paper also shows that nonscalability of the present way of realizing high-Vt devices results in negligible power savings beyond 25-nm technology. Hence, different dual-Vt process options, such as metal gate work function engineering, are required to realize high-performance and low-leakage dual-Vt designs in future technologies.  相似文献   
85.
A novel image reconstruction algorithm has been developed and demonstrated for fluorescence-enhanced frequency-domain photon migration (FDPM) tomography from measurements of area illumination with modulated excitation light and area collection of emitted fluorescence light using a gain modulated image-intensified charge-coupled device (ICCD) camera. The image reconstruction problem was formulated as a nonlinear least-squares-type simple bounds constrained optimization problem based upon the penalty/modified barrier function (PMBF) method and the coupled diffusion equations. The simple bounds constraints are included in the objective function of the PMBF method and the gradient-based truncated Newton method with trust region is used to minimize the function for the large-scale problem (39919 unknowns, 2973 measurements). Three-dimensional (3-D) images of fluorescence absorption coefficients were reconstructed using the algorithm from experimental reflectance measurements under conditions of perfect and imperfect distribution of fluorophore within a single target. To our knowledge, this is the first time that targets have been reconstructed in three-dimensions from reflectance measurements with a clinically relevant phantom.  相似文献   
86.
87.
Discrete Rayleigh distribution   总被引:1,自引:0,他引:1  
Using a general approach for discretization of continuous life distributions in the univariate & bivariate situations, we have proposed a discrete Rayleigh distribution. This distribution has been examined in detail with respect to two measures of failure rate. Characterization results have also been studied to establish a direct link between the discrete Rayleigh distribution, and its continuous counterpart. This discretization approach not only expands the scope of reliability modeling, but also provides a method for approximating probability integrals arising out of a continuous setting. As an example, the reliability value of a complex system has been approximated. This discrete approximation in a nonnormal setting can be of practical use & importance, as it can replace the much relied upon simulation method. While the replication required is minimal, the degree of accuracy remains reasonable for our suggested method when compared with the simulation method.  相似文献   
88.
Wavelet transform has the property of resolving signal in both time and frequency unlike Fourier transform. In this work, we show that time-domain information obtained from wavelet analysis of supply current can be used to test the frequency specification of analog filters efficiently. The pole/zero locations in the frequency response of analog filters shift due to change in component values with process variations. It is essential to test the filters for the shift in frequency response and fix it during production test. Wavelet analysis of supply current can be a promising alternative to test frequency specification of analog filters, since it needs only one AC stimulus and is virtually unaffected by transistor threshold variation. Simulation results on two test circuits demonstrate that we can estimate pole/zero shift with less than 3% error using only one measurement, which requires about 18 measurements in the conventional technique.Swarup Bhunia received the undergraduate degree from Jadavpur University, Calcutta, India, and the Masters degree from the Indian Institute of Technology (IIT), Kharagpur. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering, Purdue University, West Lafayette, IN, USA. He has worked in the EDA industry on RTL synthesis and verification for about three years. His research interest includes design methodologies for high-performance low-power testable VLSI system, defect-based testing, noise analysis, and noise-aware design.Arijit Raychowdhury received the B.E. degree in 2001 in electronics and telecommunication engineering from Jadavpur University, India. He is currently pursuing the Ph.D. degree in electrical and computer engineering in Purdue University, West Lafayette, IN, USA. He has worked as an analog circuit designer in Texas Instruments India. His research interests include device/circuit design for scaled silicon and nonsilicon devices. He has received academic excellence awards in 1997, 2000, and 2001 and Messner Fellowship from Purdue University in 2002. Mr. Raychowdhury has been awarded the Best Student Paper Award in the IEEE Nanotechnology Conference, 2003.Kaushik Roy received the B.Tech. degree in electronics and electrical communications engineering from the Indian Institute of Technology, Kharagpur, India, and the Ph.D. degree from the Electrical and Computer Engineering Department, University of Illinois, Urbana, in 1990. He was with the Semiconductor Process and Design Center of Texas Instruments, Dallas, TX, where he worked on FPGA architecture development and low-power circuit design. He joined the electrical and computer engineering faculty, Purdue University, West Lafayette, IN, in 1993, where he is currently a Professor. His research interests include VLSI design/CAD with particular emphasis in low-power electronics for portable computing and wireless communications, VLSI testing and verification, and reconfigurable computing. He has published more than 250 papers in refereed journals and conferences, holds six patents, and is Co-Author of a book on Low Power CMOS VLSI Design (New York: Wiley). He was Guest Editor for a Special Issue on Low-Power VLSI in IEE Proceedings Computers and Digital Techniques (July 2002). Dr. Roy received the National Science Foundation Career Development Award in 1995, the IBM Faculty Partnership Award, AT&T/Lucent Foundation Award, Best Paper Awards at the 1997 International Test Conference and 2000 International Symposium on Quality of IC Design, 2003 IEEE Latin American Test Workshop, and 2003 IEEE Nano. He is on the Editorial Board of IEEE Design and Test, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, and IEEE TRANSACTIONS ON VLSI SYSTEMS. He was Guest Editor for a Special Issue on Low-Power VLSI in IEEE DESIGN AND TEST (1994), and for the IEEE TRANSACTIONS ON VLSI SYSTEMS (June 2000).  相似文献   
89.
To provide new and/or higher rate wireless services with limited spectrum resources, frequency overlay has been naturally proposed to accommodate the new and legacy systems in a common band. We address the multiuser detection problem for overlaid code-division multiple-access (CDMA) scenarios. However, in contrast to the well-studied conventional single-rate CDMA, miscellaneous systems overlay almost always indicates the presence of multirate traffic that introduces an additional degree of freedom in receiver design-i.e., differences in the symbol rates. We concentrate on receiver design for multirate traffic, while assuming a lack of information exchange between the constituent (new and legacy) systems, as is commonplace in practice. We propose a receiver architecture based on linear parallel interference cancellation where the out-of-rate intersystem interference is estimated and subtracted by means of its characteristic subspace, thereby avoiding the need for the exact knowledge of signature waveforms of the interfering system. Simulation results validate our solution and show that the proposed receiver has better performance in various aspects than several other solutions for the same purpose.  相似文献   
90.
Low-power scan design using first-level supply gating   总被引:5,自引:0,他引:5  
Reduction in test power is important to improve battery lifetime in portable electronic devices employing periodic self-test, to increase reliability of testing, and to reduce test cost. In scan-based testing, a significant fraction of total test power is dissipated in the combinational block. In this paper, we present a novel circuit technique to virtually eliminate test power dissipation in combinational logic by masking signal transitions at the logic inputs during scan shifting. We implement the masking effect by inserting an extra supply gating transistor in the supply to ground path for the first-level gates at the outputs of the scan flip-flops. The supply gating transistor is turned off in the scan-in mode, essentially gating the supply. Adding an extra transistor in only one logic level renders significant advantages with respect to area, delay, and power overhead compared to existing methods, which use gating logic at the output of scan flip-flops. Moreover, the proposed gating technique allows a reduction in leakage power by input vector control during scan shifting. Simulation results on ISCAS89 benchmarks show an average improvement of 62% in area overhead, 101% in power overhead (in normal mode), and 94% in delay overhead, compared to the lowest cost existing method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号