首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86510篇
  免费   6272篇
  国内免费   2927篇
电工技术   4353篇
技术理论   9篇
综合类   4651篇
化学工业   15511篇
金属工艺   4453篇
机械仪表   5232篇
建筑科学   7028篇
矿业工程   1986篇
能源动力   2480篇
轻工业   4901篇
水利工程   1448篇
石油天然气   4539篇
武器工业   488篇
无线电   10443篇
一般工业技术   11300篇
冶金工业   4687篇
原子能技术   831篇
自动化技术   11369篇
  2024年   324篇
  2023年   1314篇
  2022年   2280篇
  2021年   3113篇
  2020年   2336篇
  2019年   2028篇
  2018年   2255篇
  2017年   2519篇
  2016年   2359篇
  2015年   2942篇
  2014年   4018篇
  2013年   5071篇
  2012年   5243篇
  2011年   5520篇
  2010年   4899篇
  2009年   4717篇
  2008年   4468篇
  2007年   4403篇
  2006年   4647篇
  2005年   4133篇
  2004年   2785篇
  2003年   2497篇
  2002年   2192篇
  2001年   2019篇
  2000年   2281篇
  1999年   2560篇
  1998年   2386篇
  1997年   1886篇
  1996年   1743篇
  1995年   1446篇
  1994年   1216篇
  1993年   880篇
  1992年   655篇
  1991年   543篇
  1990年   409篇
  1989年   367篇
  1988年   318篇
  1987年   175篇
  1986年   165篇
  1985年   112篇
  1984年   98篇
  1983年   63篇
  1982年   60篇
  1981年   54篇
  1980年   38篇
  1979年   32篇
  1978年   13篇
  1977年   33篇
  1976年   16篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Spinel-structured NiMn2O4 ceramics, with different valence Ni sources, were originally prepared using Ni2O3 and NiO as raw materials, and the effects of different valence Ni sources on their electrical properties were first investigated. XRD patterns show that both Ni2O3-based and NiO-based NiMn2O4 ceramics are single cubic spinel structures. SEM/EDS images indicate that the NiMn2O4 ceramics exhibited high density at the experiment-determined sintering temperatures. XPS results and Raman drifts prove that the Ni valence-induced changes in Mn ions at B sites played a significant role in the electrical properties and thermal stability of NiMn2O4 ceramics. Compared with NiO-based NiMn2O4, the resistivity at 25°C (ρ25°C) of Ni2O3-based NiMn2O4 increased dramatically from 3109 to 106958 Ω cm, the thermal constant (B25/50) increased from 3264 to 4473 K, and the resistance shifts after annealing for 1000 h at 150°C decreased from 0.80% to 0.74%. The investigation of the relationship between the material properties and valence of Ni sources has provided a new and effective way for designing the spinel-structured negative temperature coefficient (NTC) materials by modulating the valence of ions at A sites in the raw materials.  相似文献   
992.
GaFeO3-type iron oxide is a promising room-temperature multiferroic material due to its large magnetization and polarization. To expand the scope of its application, it is crucial to control the magnetic properties. Based on introducing the ferromagnetic (FM) Fe3O4 in the antiferromagnetic (AFM) GaFeO3 to build the FM-AFM interface by changing the Ga/Fe ratio, Ga0.69Fe1.31O3 (GFO) was successfully grown by the floating zone method. The resulting sample was characterized by X-ray diffraction (XRD), and its magnetic properties were measured using a superconducting quantum interference device (SQUID). The temperature-dependent AC susceptibility measurement shows that the spin glass-like behavior of GFO at temperatures close to 50 K is a manifestation of the geometrical frustration arising from cation site disorder. In addition, the magnetic property measurement shows that the magnetic transition temperature Tc is at 650 K, which is introduced by Fe3O4 and suppresses the ferromagnetic transition around 320 K of GFO. Interestingly, the observed exchange bias effect, which does not exist in the bulk GaFeO3-type family, is attributed to the formation of an FM/AFM interface due to the existence of FM Fe3O4 in the GFO. This study provides a new perspective on the properties of the GaFeO3-type family for potential applications in spintronic devices.  相似文献   
993.
To enhance the display quality of light-emitting diodes (LEDs), it is of great significance to exploit green/yellow-emitting phosphors with narrow emission band, high quantum yield, and excellent color purity to satisfy the application. Herein, orthophosphate-based green/yellow-emitting Na3Tb(PO4)2:Ce3+/Eu2+ (NTPO:Ce3+/Eu2+) phosphors have been successfully synthesized by a facile solid-state reaction method. The absorption band of NTPO samples was extended to the near-ultraviolet region and the absorption efficiency was significantly improved owing to a highly efficient energy transfer from Ce3+/Eu2+ ion to Tb3+ ion in NTPO host certified by time-resolved PL spectra. Upon 300 nm excitation, the NTPO:Ce3+ is characterized by ultra-narrow-band green emission of Tb3+ with an absolute quantum yield of 94.5%. Unexpectedly, NTPO:Eu2+ emits bright yellow light with a color purity of 73% as a result of the blending of green light emission from Tb3+ and red light emission from Eu3+. The thermal stability has been improved by controlling the stoichiometric ratio of Na+. The prototype white LED used yellow-emitting NTPO:Eu2+ phosphor has higher color-rendering index (Ra = 83.5), lower correlated color temperature (CCT = 5206 K), and closer CIE color coordinates (0.338, 0.3187) to the standard white point at (0.333, 0.333) than that used green-emitting NTPO:Ce3+ phosphor, indicating the addition of the yellow light component improved the Ra of the trichromatic (RGB) materials.  相似文献   
994.
Bioremediation strategies have been applied to clean up petroleum hydrocarbon (PHC) impacted sites. Introducing PHC degrading microorganisms (bioaugmentation) and enhancing the in‐situ nutrients availability (biostimulation) are widely used strategies. These strategies can be combined to lead to a better bioremediation performance. In this work, Pseudomonas fluorescens was isolated from a PHC impacted site. Through a 23 factorial design plan, the effect of various combinations of nitrate, sulphate, and phosphate ions on the PHC bioremediation performance by P. fluorescens was investigated using catechol, an essential metabolic intermediate of BTEX degradation, as the sole carbon source. The maximum specific catechol degradation rate was chosen as the response to evaluate the catechol bioremediation performance. The ANOVA results indicated that the presence of nitrate ions alone lowered the maximum specific catechol degradation rate, which can be explained by the accumulation of nitrites and ammonia during the denitrification process by P. fluorescens. It was noted that dosing sulphate ions alone did not affect the bioremediation performance, which indicates P. fluorescens can grow in a sulphur‐limited environment. In contrast, the presence of sulphate and nitrate ions together can lead to a higher specific catechol degradation rate. This may be caused by the presence of sulphate that can suppress the production of nitrites. The importance of phosphate ions on catechol biodegradation was investigated. The absence of phosphate led to incomplete biodegradation. Introducing phosphate ions can accelerate catechol degradation, which can be explained by the secretion of organic acids.  相似文献   
995.
Guan  Lei  Yang  Xiangyu  Li  Yu  Shi  Changliang  Yan  Dejun  Huang  Jiayong  Zhang  Lai-Chang 《Journal of Applied Electrochemistry》2021,51(11):1619-1633
Journal of Applied Electrochemistry - In this work, the electrochemical corrosion behaviours of selective laser melted (SLMed) and wrought Ti6Al4V alloys in acid fluoride-containing artificial...  相似文献   
996.
Synthesized by the reaction between α-cellulose and m-tolyl isocyanate (MTI), cellulose carbamate (CC) was blended with polyvinyl chloride (PVC) to fabricate substrates for thin-film composite (TFC) forward osmosis (FO) membranes. The introduction of CC into substrates improved both membrane structure and performance. The substrates exhibited higher porosity and hydrophilicity, and better connective pore structure; while rejection layer exhibited better morphology but limited cross-linked degree decrease after the introduction of CC. According to the results, the CC blend ratio of 10% was the optimal ratio. With this blend ratio, the TFC-10 membrane presented favorable water permeability (1.86 LMH/bar) and structure parameter (337 μm), which resulted in excellent FO performance (water flux with a value of 40.40 LMH and specific salt flux with a value of 0.099 g/L under rejection layer faces draw solution [DS] mode when 1 M NaCl and deionized water were utilized as DS and feed solution). In addition, the TFC-10 membrane showed good water flux and low-sulfate ion leakage in the potential application of brackish water desalination.  相似文献   
997.
This study reports the effect of polydopamine bionic coating and γ-methacryloxypropyltrimethoxysilane (KH570) composite modified polyacrylonitrile (PAN) fiber as a secondary modifier on the performance of styrene-butadiene-styrene (SBS) modified asphalt. Dynamic shear rheometer test indicated the complex shear modulu, storage modulus, and loss modulus of modified PAN (KD-PAN) incorporated SBS modified asphalt was increased by 12.4, 20.5, and 11.2%, respectively compared with PAN/SBS modified asphalt. The master curve of G* of fiber/SBS composite modified asphalt shows that the deformation resistance of KD-PAN/SBS modified asphalt is greater than that of PAN/SBS modified asphalt in the entire loading frequency range. The cone penetration test showed significantly enhanced shear strength of KD-PAN/SBS modified asphalt. The adhesion work test results and SEM images of interface between fiber and SBS modified asphalt revealed that the adhesion effect of KD-PAN and SBS modified asphalt is better than that of PAN and SBS modified asphalt. SEM and AFM images of fiber further showed that the fiber surface becomes rough after modification. The increased surface roughness of KD-PAN facilitated the adherence of SBS modified asphalt to it, which in turn led to the enhanced performance of KD-PAN/SBS composite modified asphalt at the same fiber content and temperature.  相似文献   
998.
Cavity pressure is one of the best indicators of injection molding conditions and thus has been used for quality prediction in the injection molding process. Also, the repeatability of the cavity pressure profile at each shot indicates the consistency of the part quality, which is easily affected by environmental changes, such as barrel temperature. To maintain quality consistency (such as part weight and geometrical dimensions) during mass production, this study proposed a novel method of the holding pressure adjustment to control the deviation in the cavity pressure distribution during each shot. Injection molding of a thin-walled dumbbell-shaped sample was performed to verify the proposed process, which proved the feasibility of this method for suppressing the influence of the barrel temperature changes on part quality.  相似文献   
999.
Aiming to enhance the carbon fiber (CF)/resin interfacial adhesion, this report describes the novel application of sodium citrate (SC) as an auxiliary reducing agent and surface regulator to control the morphology of nano-manganese dioxide (MnO2) on the CF surface. The composites were fabricated by means of controlling the molar concentration ratio of SC to Mn source (0:1, 1:3, 1:2, and 1:1) in hydrothermal synthesis. The results reveal that MnO2 nanosheets on the CF surface become denser as the concentration of SC is 1/3 of Mn source, which makes advance to the surface roughness and surface energy of CF. Simultaneously, the tensile strength of as-prepared composite is increased by 52.8%. The homologous friction coefficient tends to be high and stable and the wear volume is significantly reduced by 63.8 and 26.5% under the applied loads of 3 and 5 N in contrast with the original composites prepared without SC. As a result, it can be inferred that SC plays a crucial role in enhancing the interfacial bonding strength between the CF and matrix, providing insights into the interface control of CF-reinforced resin matrix composites.  相似文献   
1000.
The flame retardant polypropylene containing the micro-envelope core-shell structure flame retardant, which encapsulated ammonium polyphosphate into melamine-formaldehyde resin and sodium silicate through in situ polymerization was prepared with polyamide 6, added as a carbon-forming agent. The composition of ammonium polyphosphate, encapsulated ammonium polyphosphate with melamine-formaldehyde resin and the micro-envelope core-shell structure flame retardant were characterized. The fire safety and thermal stability were investigated and showed an improvement including limiting oxygen index, thermogravimetric analysis, vertical burning tests, and microscale combustion calorimeter. The burned compounds were also studied to confirm the burning mechanism. The results showed the flame retardant performance had been greatly improved, while polyamide 6 had better char-forming effect. Besides, the water solubility of flame retardants and their influence on the mechanical properties of polypropylene were also investigated. The results on the effects of additives demonstrated a high efficiency flame retardant to polypropylene. A core-shell flame retardant that sodium silicate and melamine-formaldehyde resin-coated ammonium polyphosphate had been constructed. The effect of the built flame retardant system on the combustion performance of polypropylene was studied from the mechanism and performance. The LOI of the most flame retardant polypropylene reached 28.6%, and UL-94 reached the V-0 level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号