首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130817篇
  免费   11434篇
  国内免费   5942篇
电工技术   7850篇
技术理论   8篇
综合类   8780篇
化学工业   21478篇
金属工艺   7460篇
机械仪表   8931篇
建筑科学   10095篇
矿业工程   4174篇
能源动力   3799篇
轻工业   8765篇
水利工程   2346篇
石油天然气   8162篇
武器工业   1061篇
无线电   14824篇
一般工业技术   15637篇
冶金工业   6360篇
原子能技术   1447篇
自动化技术   17016篇
  2024年   435篇
  2023年   2198篇
  2022年   3902篇
  2021年   5599篇
  2020年   4206篇
  2019年   3524篇
  2018年   3940篇
  2017年   4524篇
  2016年   3862篇
  2015年   5380篇
  2014年   6749篇
  2013年   8165篇
  2012年   8598篇
  2011年   9612篇
  2010年   8362篇
  2009年   8010篇
  2008年   7816篇
  2007年   7225篇
  2006年   7010篇
  2005年   6006篇
  2004年   3951篇
  2003年   3403篇
  2002年   3117篇
  2001年   2768篇
  2000年   2750篇
  1999年   2978篇
  1998年   2530篇
  1997年   2052篇
  1996年   1996篇
  1995年   1716篇
  1994年   1369篇
  1993年   1051篇
  1992年   769篇
  1991年   625篇
  1990年   466篇
  1989年   362篇
  1988年   311篇
  1987年   193篇
  1986年   148篇
  1985年   115篇
  1984年   76篇
  1983年   60篇
  1982年   62篇
  1981年   43篇
  1980年   43篇
  1979年   25篇
  1977年   10篇
  1976年   12篇
  1975年   7篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
在无线片上网络中,无线节点拥塞以及不同子网和全局网络内的流量平衡情况对整个片上网络的通信效率有着重要的影响,为此提出了基于Edge first算法的全局流量平衡机制(GTB)。首先优化了划分有线无线数据包的机制,减少了无线节点处的拥塞;其次根据无线路由器(WR)的拥塞情况,提出Edge first路由算法平衡子网内的流量;最后在全局网络中提出了全局子网拥塞感知(GSCA)判断机制,使得长距离数据包优先从低拥塞子网通过,平衡了全局网络的流量。实验表明,该方案在可接受的硬件开销、功耗开销下,保证较低的网络延迟和较高的网络吞吐率,并且大幅的提升了网络的流量平衡性能。  相似文献   
992.
针对大型非周期相控阵天线的特点,提出一种多学科、多领域协同设计的方法。然后运用该方法指导两个产品天线设计,围绕协同设计的典型流程和几个关键控制点展开论述。在测试阶段实测天线的主要指标,天线1辐射端面平面度≤1.4 mm,栅瓣电平≤-20 dB,天线2辐射端面平面度≤1.1 mm,栅瓣电平≤-18 dB,实测数据与仿真结果吻合,各项指标优于设计输入要求,使用性能良好,验证协同设计方法的有效性。最后指明大型非周期相控阵天线协同设计的进一步研究方向。  相似文献   
993.
Molecular spectroscopy has been widely used to identify pesticides. The main limitation of this approach is the difficulty of identifying pesticides with similar molecular structures. When these pesticide residues are in trace and mixed states in plants, it poses great challenges for practical identification. This study proposed a state-of-the-art method for the rapid identification of trace (10 mg·L−1) and multiple similar benzimidazole pesticide residues on the surface of Toona sinensis leaves, mainly including benzoyl (BNL), carbendazim (BCM), thiabendazole (TBZ), and their mixtures. The new method combines high-throughput terahertz (THz) imaging technology with a deep learning framework. To further improve the model reliability beyond the THz fingerprint peaks (BNL: 0.70, 1.07, 2.20 THz; BCM: 1.16, 1.35, 2.32 THz; TBZ: 0.92, 1.24, 1.66, 1.95, 2.58 THz), we extracted the absorption spectra in frequencies of 0.2–2.2 THz from images as the input to the deep convolution neural network (DCNN). Compared with fuzzy Sammon clustering and four back-propagation neural network (BPNN) models (TrainCGB, TrainCGF, TrainCGP, and TrainRP), DCNN achieved the highest prediction accuracies of 100%, 94.51%, 96.26%, 94.64%, 98.81%, 94.90%, 96.17%, and 96.99% for the control check group, BNL, BCM, TBZ, BNL + BCM, BNL + TBZ, BCM + TBZ, and BNL + BCM + TBZ, respectively. Taking advantage of THz imaging and DCNN, the image visualization of pesticide distribution and residue types on leaves was realized simultaneously. The results demonstrated that THz imaging and deep learning can be potentially adopted for rapid-sensing detection of trace multi-residues on leaf surfaces, which is of great significance for agriculture and food safety.  相似文献   
994.
Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.  相似文献   
995.
The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice’s kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant downregulation of TP63 and increased IRS-1 expression. Ad-cDNA-mediated over-expression of tuberin resulted in significantly decreased TP63 levels and upregulation of IRS-1 expression. Furthermore, TP63 knockdown resulted in increased glucose uptake, whereas IRS-1 knockdown resulted in a decrease in the glucose uptake. Altogether, animal and cell culture data showed a potential role of TP63 as a new candidate gene involved in regulating IRS-1 that may be used as a new therapeutic target to prevent kidney complications in diabetes.  相似文献   
996.
Inhalational anesthetics was previously reported to suppress glioma cell malignancy but underlying mechanisms remain unclear. The present study aims to investigate the effects of sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation. The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210 and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining. Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration. Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics, sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study warrants further study.  相似文献   
997.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a member of the colony-stimulating factor (CSF) family, which functions to enhance the proliferation and differentiation of hematopoietic stem cells and other hematopoietic lineages such as neutrophils, dendritic cells, or macrophages. These proteins have thus generated considerable interest in clinical therapy research. A current obstacle to the prokaryotic production of human GM-CSF (hGM-CSF) is its low solubility when overexpressed and subsequent complex refolding processes. In our present study, the solubility of hGM-CSF was examined when combined with three N-terminal fusion tags in five E. coli strains at three different expression temperatures. In the five E. coli strains BL21 (DE3), ClearColi BL21 (DE3), LOBSTR, SHuffle T7 and Origami2 (DE3), the hexahistidine-tagged hGM-CSF showed the best expression but was insoluble in all cases at each examined temperature. Tagging with the maltose-binding protein (MBP) and the b′a′ domain of protein disulfide isomerase (PDIb′a′) greatly improved the soluble overexpression of hGM-CSF at 30 °C and 18 °C. The solubility was not improved using the Origami2 (DE3) and SHuffle T7 strains that have been engineered for disulfide bond formation. Two conventional chromatographic steps were used to purify hGM-CSF from the overexpressed PDIb′a′-hGM-CSF produced in ClearColi BL21 (DE3). In the experiment, 0.65 mg of hGM-CSF was isolated from a 0.5 L flask culture of these E. coli and showed a 98% purity by SDS-PAGE analysis and silver staining. The bioactivity of this purified hGM-CSF was measured at an EC50 of 16.4 ± 2 pM by a CCK8 assay in TF-1 human erythroleukemia cells.  相似文献   
998.
999.
Here, zinc-neutralized ethylene propylene diene monomer (EPDM) ionomers with different neutralization levels are prepared through melt blending, and are then incorporated with polyamide 1012 (PA1012) to fabricate PA1012/EPDM ionomer blends. Interestingly, complex crosslinking networks are formed in the blends due to the construction of sacrificial bonds (Zn2+-carboxyl, Zn2+-amide). The as-formed network structure and sacrificial bond endow the PA/EPDM blends with largely enhanced toughness (16 times higher than that of neat PA), as well as balanced strength and stiffness. Meanwhile, the rheological behaviors of PA1012/EPDM ionomer blends indicate their relative low melting viscosity, which can avoid the processing shortcomings of plastics toughened with rubber. Moreover, PA1012/EPDM ionomer blends show obvious gelation behavior, and a maximum notched Izod impact strength exhibited at the gel point, in which unique double network structure can be observed obviously, indicating that there is a corresponding correlation between the rheological and mechanical parameters. Furthermore, the supper-toughening mechanism of PA1012/EPDM ionomer blends at gel point is explored, which origins from the large deformation and cavitation of rubber particles and the destruction of special double network morphologies. This study provides a novel and effective strategy to fabricate PA materials with outstanding toughness and excellent strength simultaneously.  相似文献   
1000.
In this study, a kind of imidazole type poly(ionic liquid) ([PEP-MIM]Cl) is synthesized, which can disperse carbon effectively. [PEP-MIM]Cl is used as an intermediate to coat carbon on the poly(acrylic acid)(PAA-co-MBA) via ion exchange to obtain conductive polymer composite (CPC). A series of characterizations are performed. Experiments show that carbon can be coated on the PAA-co-MBA uniformly, and compared with using carbon as filler, this method requires less carbon to achieve good conductive performance. The carbon layer on the polymer's surface is enriched via the swelling-shrinking properties of PAA-co-MBA according to the SEM images. Furthermore, in combination with 3D printing technology, PAA-co-MBA can be designed into different shapes to achieve various functions such as pressure-sensing element. Finally, a new type of CPC named carbon clad polymeric laminate (CCPL) is prepared by using the carbon coating method and 3D printing technology. It has the potential to replace copper clad laminate (CCL) and printed circuit board (PCB), to a certain extent. This technology expands the preparation method and application of the CPC such as flexible and wearable conductive fabrics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号