首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5006篇
  免费   281篇
  国内免费   21篇
电工技术   57篇
综合类   1篇
化学工业   1070篇
金属工艺   102篇
机械仪表   103篇
建筑科学   215篇
矿业工程   2篇
能源动力   146篇
轻工业   490篇
水利工程   39篇
石油天然气   15篇
无线电   467篇
一般工业技术   1000篇
冶金工业   541篇
原子能技术   36篇
自动化技术   1024篇
  2023年   33篇
  2022年   101篇
  2021年   131篇
  2020年   101篇
  2019年   97篇
  2018年   165篇
  2017年   149篇
  2016年   167篇
  2015年   132篇
  2014年   210篇
  2013年   328篇
  2012年   327篇
  2011年   375篇
  2010年   279篇
  2009年   301篇
  2008年   284篇
  2007年   253篇
  2006年   185篇
  2005年   152篇
  2004年   140篇
  2003年   135篇
  2002年   116篇
  2001年   72篇
  2000年   76篇
  1999年   89篇
  1998年   140篇
  1997年   102篇
  1996年   74篇
  1995年   46篇
  1994年   50篇
  1993年   45篇
  1992年   43篇
  1991年   23篇
  1990年   27篇
  1989年   24篇
  1988年   30篇
  1987年   18篇
  1986年   26篇
  1985年   30篇
  1984年   24篇
  1983年   15篇
  1982年   15篇
  1981年   16篇
  1980年   21篇
  1979年   15篇
  1978年   8篇
  1977年   17篇
  1976年   23篇
  1974年   13篇
  1973年   11篇
排序方式: 共有5308条查询结果,搜索用时 15 毫秒
991.
Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors (3.38 l active volume) were used to directly compare psychrophilic (15 degrees C), anaerobic digestion (PAD) to mesophilic (37 degrees C) anaerobic digestion (MAD) for the treatment of a brewery wastewater (chemical oxygen demand (COD) concentration of 3,136+/-891 mg l(-1)). Bioreactor performance was evaluated by COD removal efficiency and biogas yields at a range of hydraulic and organic loading rates. Specific methanogenic activity (SMA) assays were also employed to investigate the activity of the biomass in the bioreactors. No significant difference in the COD removal efficiencies (which ranged from 85-93%) were recorded between PAD and MAD during the 194-d trial at maximum organic and hydraulic loading rates of 4.47 kg m(-3) day(-1) and 1.33 m(3) m(-3) day(-1), respectively. In addition, the methane content (%) of the biogas was very similar. The volumetric biogas yield from the PAD bioreactor was approximately 50% of that from the MAD bioreactor at an organic loading rate of 4.47 kg COD m(-3) day(-3) and an applied liquid up-flow velocity (V(up)) of 2.5 m h(-1). Increasing the V(up) in the PAD bioreactor to 5 m h(-1) resulted in a volumetric biogas production rate of approximately 4.1 l d(-1) and a methane yield of 0.28 l CH(4) g(-1) COD d(-1), which were very similar to the MAD bioreactor. Significant and negligible biomass washout was observed in the mesophilic and psychrophilic systems, respectively, thus increasing the sludge loading rate applied to the former and underlining the robustness of the latter, which appeared underloaded. A psychrotolerant mesophilic, but not truly psychrophilic, biomass developed in the PAD bioreactor biomass, with comparable maximum SMA values to the MAD bioreactor biomass. PAD, therefore, was shown to be favourably comparable to MAD for brewery wastewater treatment and biogas generation.  相似文献   
992.
A simple method based on diffuse reflectance coupled with infrared Fourier transform spectroscopy (DRIFTS) has been developed for the quantification and the characterization of sedimentary (or soil, peat, etc.) humic substances. Under optimized conditions, the quantification of humic substances or total organic matter is possible with DRIFTS at a frequency of 2930 cm(-1) using whole dry sediment samples. A study of the operational parameters that affect the DRIFTS signal shows the importance of normalizing analysis conditions, especially the diffuse reflectance accessory alignment, the particle size and compaction, and the homogeneity of the powdered samples, to obtain reproducible quantitative analyses. The quantification of total humic substances by DRIFTS correlates well with the concentrations determined using classical extraction methods. DRIFTS analysis requires only a few minutes instead of tedious extractions of humic substances. Moreover, the distribution of total organic matter and of fulvic acids, humic acids, and humin can also be obtained. Analysis of natural samples indicates that a calibration using humic material representative of the studied area provides the most accurate quantification. The fast screening of organic matter fractions by DRIFTS on intact natural samples provides useful quantitative and qualitative information that can be used in environmental or monitoring studies.  相似文献   
993.
994.
Renewable thermoplastic blends based on polyurethane (TPU) and polyamide (DAPA) obtained from dimers of fatty acids were reinforced with mineral microfillers, surface coated calcium carbonate (CaCO3) or high aspect ratio talc (HAR), to prepare different micro‐biocomposites systems. The influence of the nature of the filler, the aspect ratio and the filler content (5, 10, and 15 wt %), for different TPU/DAPA ratios (20/80, 50/50, and 80/20 wt %/wt %), were specifically investigated. Differential scanning calorimetry (DSC) and thermogravimetric analyses were conducted to investigate the thermal properties. DSC analyses showed that the addition of CaCO3 had no influence on the glass transition and the melting temperature of the corresponding composites. Moreover, the morphology and the mechanical properties in the solid state of the different multiphase systems were investigated. SEM observations after tensile tests showed that the best matrix/filler interactions were obtained in the case of the 20/80‐based systems. Uniaxial tensile tests have shown that the addition of HAR or CaCO3 fillers led to a clear increase of the Young modulus. Micromechanical models based on a two‐phase composite approach, including Mori–Tanaka and Davies models were used to describe the dependence of the elastic modulus on the volume fraction of HAR or CaCO3 fillers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43055.  相似文献   
995.
A portfolio selection model which allocates a portfolio of currencies by maximizing the expected return subject to Value-at-Risk (VaR) constraint is designed and implemented. Based on an econometric implementation using intradaily data, the optimal portfolio allocation is forecasted at regular time intervals. For the estimation of the conditional variance from which the VaR is computed, univariate and multivariate GARCH models are used. Model evaluation is done using two economic criteria and two statistical tests. The result for each model is given by the best forecasted intradaily investment recommendations in terms of the optimal weights of the currencies in the risky portfolio. The results show that estimating the VaR from multivariate GARCH models improves the results of the forecasted optimal portfolio allocation, compared to using a univariate model.  相似文献   
996.
Direct generation of electricity from a mixture of carbon sources was examined using single chamber mediator-less air cathode microbial fuel cells (MFCs) at sub-ambient temperatures. Electricity was directly generated from a carbon source mixture of d-glucose, d-galactose, d-xylose, d-glucuronic acid and sodium acetate at 30 °C and <20 °C (down to 4 °C). Anodic biofilms enriched at different temperatures using carbon source mixtures were examined using epi-fluorescent, scanning electron microscopy, and cyclic voltammetry for electrochemical evaluation. The maximum power density obtained at different temperatures ranged from 486 ± 68 mW m−2 to 602 ± 38 mW m−2 at current density range of 0.31 mA cm−2 to 0.41 mA cm−2 (14 °C and 30 °C, respectively). Coulombic efficiency increased with decreasing temperature, and ranged from 24 ± 3 to 38 ± 1% (20 °C and 4 °C, respectively). Chemical oxygen demand (COD) removal was over 68% for all carbon sources tested. Our results demonstrate adaptation, by gradual increase of cold-stress, to electricity production in MFCs at sub-ambient temperatures.  相似文献   
997.
A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).  相似文献   
998.
Here we report the encapsulation of an osteosarcoma stem cell (OSC) potent gallium(III)-diflunisal complex 1 into polymeric nanoparticles, and its delivery into osteosarcoma cells. At the optimum feed (20 %, 1 NP20 ), nanoparticle encapsulation of 1 enhances potency towards bulk osteosarcoma cells and OSCs (cultured in monolayer and three-dimensional systems). Strikingly, the nanoparticle formulation exhibits up to 5645-fold greater potency towards OSCs than frontline anti-osteosarcoma drugs, doxorubicin and cisplatin. The nanoparticle formulation evokes a similar mechanism of action as the payload, which bodes well for future translation. Specifically, the nanoparticle formulation induces nuclear DNA damage, cyclooxygenase-2 downregulation, and caspase-dependent apoptosis. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver an OSC-active metal complex into osteosarcoma cells.  相似文献   
999.
High-entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end-members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid-solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high-entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high-entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号