全文获取类型
收费全文 | 3621篇 |
免费 | 291篇 |
国内免费 | 96篇 |
专业分类
电工技术 | 203篇 |
技术理论 | 1篇 |
综合类 | 188篇 |
化学工业 | 724篇 |
金属工艺 | 199篇 |
机械仪表 | 189篇 |
建筑科学 | 300篇 |
矿业工程 | 84篇 |
能源动力 | 183篇 |
轻工业 | 178篇 |
水利工程 | 48篇 |
石油天然气 | 192篇 |
武器工业 | 18篇 |
无线电 | 352篇 |
一般工业技术 | 503篇 |
冶金工业 | 203篇 |
原子能技术 | 24篇 |
自动化技术 | 419篇 |
出版年
2024年 | 12篇 |
2023年 | 67篇 |
2022年 | 84篇 |
2021年 | 142篇 |
2020年 | 112篇 |
2019年 | 99篇 |
2018年 | 119篇 |
2017年 | 139篇 |
2016年 | 119篇 |
2015年 | 120篇 |
2014年 | 152篇 |
2013年 | 211篇 |
2012年 | 246篇 |
2011年 | 218篇 |
2010年 | 196篇 |
2009年 | 200篇 |
2008年 | 177篇 |
2007年 | 166篇 |
2006年 | 200篇 |
2005年 | 176篇 |
2004年 | 103篇 |
2003年 | 118篇 |
2002年 | 89篇 |
2001年 | 62篇 |
2000年 | 99篇 |
1999年 | 109篇 |
1998年 | 96篇 |
1997年 | 63篇 |
1996年 | 67篇 |
1995年 | 73篇 |
1994年 | 51篇 |
1993年 | 22篇 |
1992年 | 30篇 |
1991年 | 19篇 |
1990年 | 11篇 |
1989年 | 13篇 |
1988年 | 7篇 |
1987年 | 4篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1982年 | 5篇 |
1980年 | 1篇 |
排序方式: 共有4008条查询结果,搜索用时 16 毫秒
51.
皮秒参数测量系统用于提供皮秒拍瓦激光系统的各项状态参数,协助激光系统达到预期的技术指标。针对皮秒拍瓦激光系统的技术指标,皮秒参数测量系统将提供压缩脉冲的能量、脉宽、远场、信噪比等参数。为了判断参数测量系统的工作性能,采用均方根(RMS)误差来描述测量系统的可靠性。经过实验测试,能量测量单元的测量范围为10~1000J,标定实验数据的RMS误差为2.2%。脉宽测量单元的时间测量范围为0.5~18.0ps,时间分辨率为0.07ps,测试数据的RMS误差为3%。远场测量单元的空间测量范围为150倍衍射极限(DL),空间分辨率为0.3倍DL,测试数据的RMS误差为0.15%。信噪比测量单元的时间测量范围为30ps,时间分辨率为0.3ps,动态范围为106。基于拍瓦实验提供的测试数据表明,皮秒参数测量系统能够稳定可靠地提供以上参数的实时测试数据,实现拍瓦装置的运行状态诊断功能。 相似文献
52.
现有主流智能Fuzzing测试一般通过对程序内部结构的精确分析构造新测试样本,因而严重依赖于当前计算机的性能,往往忽略了已发现的程序异常信息对新测试样本构造的指导意义。为了克服上述缺陷,该文提出一种基于异常分布导向的智能Fuzzing方法。该方法针对二进制程序测试,建立了TGM(Testcase Generation Model)样本构造模型:首先根据计算能力收集测试样本集的相关信息;然后随机选择初始测试样本进行测试;最后,基于测试结果初始化模型参数,根据模型优先选择更有效的输入属性构造新样本并进行新一轮测试,通过重复进行该步骤,在迭代测试中不断更新模型参数,用于指导下一轮新测试样本构造。实验数据表明该方法可以辅助Fuzzing选择更有效的样本优先进行测试,设计的原型工具CombFuzz在异常检测能力和代码覆盖能力上都有良好表现,同时,在对大型应用程序进行测试时,与微软SDL实验室的MiniFuzz测试器相比,在限定时间内平均异常发现率提高近18倍,并在WPS 2013等软件中发现了7个MiniFuzz无法发现的未公开可利用脆弱点。 相似文献
53.
54.
无人机(UAV)的普及,给人们带来了极大的安全隐患.针对该问题,设计了一种基于主动子空间鲁棒主成分分析(ASRPCA)和五帧差分相融合的UAV视频检测算法.首先,采用交替迭代法结合增广拉格朗日乘子法对ASRPCA模型进行优化求解,获取视频序列当前帧的背景图像;其次,用背景图像替代五帧差分的中间帧;最后,中间帧分别与前两... 相似文献
55.
The unique atomic thickness and mechanical flexibility of 2D van der Waals (vdW) materials endow them with spatial designability and constructability. It is easy to break the inherent planar construction through various spatial manipulations, thus creating vdW nanoarchitectures with nonplanar topologies. The basic properties before evolution are retained and tunable by architecture-related feature sizes, and other newly generated properties are inspiring as they are beyond the reach of 2D allotropes, bringing great competitiveness for their encouraging applications in optoelectronics. Here, these representative nonplanar vdW nanoarchitectures (i.e., nanoscrolls, nanotubes, spiral nanopyramids, spiral nanowires, nanoshells, etc.) are summarized and their structural evolution processes are elucidated. Their fascinating nascent properties based on their distinctive structural features, focusing on generally enhanced light–matter interactions and device physics, are further introduced. Finally, their opportunities and challenges for in-depth experimental exploration are prospected. It is a brand-new idea to modify the properties of 2D vdW materials from micro- and nanostructural design and evolution, offering a solid platform for twistronics, valleytronics, and integrated nanophotonics. 相似文献
56.
Panbo Liu Guozheng Zhang Hanxiao Xu Shuaici Cheng Ying Huang Bo Ouyang Yuetong Qian Ruixuan Zhang Renchao Che 《Advanced functional materials》2023,33(13):2211298
Dielectric polarization and magnetic resonance associated with intrinsic constituent and extrinsic structure are two kinds of fundamental attenuation mechanisms for microwave absorbers, but remain extremely challenging in revealing the composition-morphology-performance correlation. Herein, hierarchical MXene/metal-organic framework derivatives with coherent boundaries and magnetic units below critical grain size are constructed to realize synergistic dielectric–magnetic enhancement by phase-evolution engineering and dynamic magnetic resonance. Specifically, phase-evolution induced inseparable interfaces, diverse incompatible phases, and defects/vacancies contribute to dielectric polarization, while closely distributed magnetic units simultaneously realize nanoscale multi-domain coupling and long-range magnetic interaction. As results, the hierarchical derivatives promise an exceptional reflection loss of −59.5 dB and an effective absorption bandwidth of 6.1 GHz. Both experimental results and theoretical calculations indicate that phase-evolution engineering and dynamic magnetic resonance maximize the absorption capability and demonstrate a versatile methodology for manipulating microwave attenuation. More importantly, the proposed multi-domain coupling and long-range magnetic interaction theories innovatively offer dynamic magnetic resonance mechanism for magnetic loss within critical grain size. 相似文献
57.
Minzheng Yang Feng Yuan Wenxiong Shi Weibin Ren Mengfan Guo Chen Ouyang Le Zhou Nannan Sun Yao Xiao Erxiang Xu Xuanhe Zhang Yan Wei Xuliang Deng Cewen Nan Xun Wang Yang Shen 《Advanced functional materials》2023,33(12):2214100
Polymer dielectrics with high breakdown strength (Eb) and high efficiency are urgently demanded in advanced electrical and electronic systems, yet their energy density (Ue) is limited due to low dielectric constant (εr) and high loss at elevated temperatures. Conventional inorganic fillers with diameters from nano to micrometers can only increase εr at the cost of compromised Eb and Ue due to their poor compatibility with polymer matrix. Herein, hydroxyapatite (HAP) sub-nanowires with a diameter of ≈0.9 nm are incorporated in polyetherimide (PEI) matrix to form HAP/PEI sub-nanocomposites. εr and Eb of the composites are concomitantly enhanced with only 0.5 wt.% of HAP sub-nanowires, leading to high Ue of 5.14 (@150 °C) and 3.1 J cm−3 (@200 °C) with efficiency of 90% and high-temperature stability up to 3 × 105 charge-discharge cycles at 200 °C. Microstructural analysis and molecular dynamics simulations indicate that the sub-nanowires with comparable diameter as polymer chains induce enormous interfacial area, substantially increase mobility of polymer chains and form dense traps for charge carriers. This work extends the current research scope of polymer-inorganics composite dielectrics to the sub-nano-level incorporation and provides a novel strategy for fabricating high performance polymer dielectrics at elevated temperatures. 相似文献
58.
Yanguang Zhang Zhao Li Jianying Ouyang Sai-Wing Tsang Jianping Lu Kui Yu Jianfu Ding Ye Tao 《Organic Electronics》2012,13(12):2773-2780
Polymer/inorganic-nanocrystals bulk heterojunction solar cells, where inorganic semiconductor nanocrystals such as CdSe, CdS, CdTe, ZnO, TiO2, and silicon, replace the fullerene molecules as the electron acceptors, typically exhibit a power conversion efficiency (PCE) below 3% even after tremendous engineering efforts to optimize the nanocrystal size, shape, and nanoscale morphology. One promising feature of polymer hybrid solar cells is the ability to sensitize conjugated polymers, which on their own absorb only in the visible part of solar spectrum, into the infrared spectral range using infrared-active lead salt nanocrystal quantum dots (NQDs). Here we observed for the first time hole transfer from PbS NQDs to polymers as evidenced by the quenching of the PbS photoluminescence (PL), a sign of the presence of charge separating type II heterojunction. The type II band-offset at the NQD/polymer heterojunction enables efficient hole extraction from NQDs and leads to a record PCE of 3.80%, realized in a planar junction configuration under simulated air mass 1.5 global (AM 1.5G) irradiation of 100 mW/cm2. The photocurrent has an extended spectral range spanning from the ultraviolet (UV) to the infrared (IR). Contributions from the polymer and PbS to the photocurrent were identified. Infrared photons (>700 nm) contribute about 30% of the photocurrent and yield a high external quantum efficiency (EQE) of 20% at 1050 nm. 相似文献
59.
Xiangqian Zhang Min Yu Ziran Ma Han Ouyang Yang Zou Steven L. Zhang Hukai Niu Xinxiang Pan Minyi Xu Zhou Li Zhong Lin Wang 《Advanced functional materials》2019,29(41)
Ship draft measurement is of great significance for ensuring navigation safety and facilitating ship control. In this work, a self‐powered water level sensor based on a liquid–solid tubular triboelectric nanogenerator (LST‐TENG) is proposed and analyzed. The LST‐TENG is made of multiple copper electrodes uniformly distributed along a polytetrafluoroethylene (PTFE) tube. When water flows into the PTFE tube, it induces alternating flows of electrons between the main electrode and the distributed bottom electrodes. The obvious peaks in the derivative of open‐circuit voltage with respect to time are found to correspond with the electrode distribution. Then it can be utilized as a robust and sensitive indicator for detecting the water level as the number of obvious peaks in the derivative of open‐circuit voltage is directly related to the water level height. The ship draft is successfully detected using the LST‐TENG with an accuracy of 10 mm. It shows that the water level sensor has stable performance for liquid–solid interface monitoring. Therefore, this LST‐TENG is self‐powered, robust, and accurate for extensive applications in marine industry. 相似文献
60.
Joshua A. Jackman Bo Kyeong Yoon Lei Ouyang Nan Wang Abdul Rahim Ferhan Jaeyun Kim Tetsuro Majima Nam-Joon Cho 《Advanced functional materials》2021,31(12):2008352
The ongoing coronavirus disease 2019 (COVID-19) pandemic highlights the importance of developing effective virus targeting strategies to treat and prevent viral infections. Since virus particles are nanoscale entities, nanomaterial design strategies are ideally suited to create advanced materials that can interact with and mimic virus particles. In this progress report, the latest advances in biomimetic nanomaterials are critically discussed for combating viral infections, including in the areas of nanomaterial-enhanced viral replication inhibitors, biomimetic virus particle capture schemes, and nanoparticle vaccines. Particular focus is placed on nanomaterial design concepts and material innovations that can be readily developed to thwart future viral threats. Pertinent nanomaterial examples from the COVID-19 situation are also covered along with discussion of human clinical trial efforts underway that might lead to next-generation antiviral therapies and vaccines. 相似文献