首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1070篇
  免费   113篇
  国内免费   1篇
电工技术   4篇
化学工业   603篇
金属工艺   15篇
机械仪表   15篇
建筑科学   39篇
矿业工程   6篇
能源动力   30篇
轻工业   238篇
水利工程   6篇
石油天然气   5篇
无线电   25篇
一般工业技术   124篇
冶金工业   21篇
原子能技术   1篇
自动化技术   52篇
  2024年   2篇
  2023年   14篇
  2022年   106篇
  2021年   224篇
  2020年   50篇
  2019年   53篇
  2018年   44篇
  2017年   58篇
  2016年   74篇
  2015年   47篇
  2014年   59篇
  2013年   68篇
  2012年   58篇
  2011年   59篇
  2010年   34篇
  2009年   49篇
  2008年   36篇
  2007年   29篇
  2006年   25篇
  2005年   16篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有1184条查询结果,搜索用时 15 毫秒
191.
192.
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.  相似文献   
193.
194.
Two series of poly(ether urethane)s and one series of poly(ester urethane)s were synthesized, containing, respectively, poly(oxytetramethylene) diol (PTMO) of M n = 1000 and 2000 and poly(ε‐caprolactone) diol of M n = 2000 as soft segments. In each series the same hard segment, i.e., 4,4′‐(ethane‐1,2‐diyl)bis(benzenethiohexanol)/hexane‐1,6‐diyl diisocyanate, with different content (~ 14–72 wt %) was used. The polymers were prepared by a one‐step melt polymerization in the presence of dibutyltin dilaurate as a catalyst, at the molar ratio of NCO/OH = 1 (in the case of the polymers from PTMO of M n = 1000 also at 1.05). For all polymers structures (by FTIR and X‐ray diffraction analysis) and physicochemical, thermal (by differential scanning calorimetry and thermogravimetric analysis), and tensile properties as well as Shore A/D hardness were determined. The resulting polymers were thermoplastic materials with partially crystalline structures (except the polymer with the highest content of PTMO of M n = 2000). It was found that the poly(ether urethane)s showed lower crystallinity, glass‐transition temperature (Tg), and hardness as well as better thermal stability than the poly(ester urethane)s. Poly(ether urethane)s also exhibited higher tensile strength (up to 23.5 MPa vs. 20.3 MPa) and elongation at break (up to ~ 1950% vs. 1200%) in comparison with the corresponding poly(ester urethane)s. Among the poly(ether urethane)s an increase in soft‐segment length was accompanied by an increase in thermal stability, tensile strength, and elongation at break, as well as a decrease in Tg, crystallinity, and hardness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
195.
The seeds of four prairie fruits—chokecherry (Prunus virginiana), thorny buffaloberry (Shepherdia argentea), Woods’ rose (Rosa woodsii) and hawthorn (Crataegus × mordenensis)—from Southern Alberta were investigated. The lipid contents of the seeds were found to be 10.4, 11.5, 3.7 and 3.4%, respectively. The tested seed lipids contained mainly linoleic acid in the range from 27.9 to 65.6% and oleic acid from 19.7 to 61.9%. The thorny buffaloberry and Woods’ rose seed lipids contained 29.2 and 30.8% of linolenic acid, respectively. The contents of palmitic and stearic acids ranged from 3.2 to 5.4% and 1.6 to 2.2%, respectively. The contents of total tocopherols in the chokecherry, thorny buffaloberry, Woods’ rose and hawthorn seed lipids accounted for 595, 897, 2,358 and 2,837 mg/kg, respectively. The main sterols in the lipids were β-sitosterol, Δ5-avenasterol, cycloartenol, campesterol, stigmasterol and gramisterol. The results of the present study show that the lipids from the seeds of the investigated prairie fruits could be a good source of valuable essential fatty acids, tocopherols and sterols, thus suggesting their application as functional foods and nutraceuticals.  相似文献   
196.
The ability of such a common redox mediator as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to undergo sorption on carbon surfaces is explored here to convert multiwalled carbon nanotubes (CNTs) into a stable colloidal solution of ABTS-modified carbon nanostructures, the diameters of which are approximately 10 nm (as determined by transmission electron microscopy). Subsequently, inks composed of fungal laccase (Cerrena unicolor) mixed with the dispersion of ABTS-modified CNTs and stabilized with Nafion, were deposited on glassy carbon and successfully employed to the reduction of oxygen in McIlvain buffer at pH 5.2. For comparison, the systems utilizing only ABTS-free CNTs and laccase as well as ABTS-modified CNTs did not show appreciable activity toward the oxygen reduction. The three-dimensionally distributed ABTS-modified CNTs are expected to improve the film's overall conductivity and to facilitate electrical connection between the electrode and the enzyme. The network film of ABTS-modified CNTs is rigid, and it is characterized by charge propagation capabilities comparable to the conventional redox polymers. The whole concept of utilization of CNTs modified with ultrathin films of redox mediators in the preparation of efficient bioelectrocatalytic films seems to be of general importance to electroanalytical chemistry and to the development of biosensors.  相似文献   
197.
Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera). Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte) contained high levels of flavanols (particularly, catechin and epicatechin). By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.  相似文献   
198.
Technetium-99 comprises a significant health risk, since edible plants can bioaccumulate and convert it to more lipophilic species that cannot be excreted through urine. Batch kinetics of pertechnetate removal from aqueous solutions by two samples of crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) functionalized with diethylene triamine (PGME-deta) was investigated at the optimum pH value of 3.0, and the initial solution activity of 325 MBq dm−3. PGME-deta was characterized by elemental analysis, mercury intrusion porosimetry, and scanning electron microscopy. Five kinetic models (pseudo-first, pseudo-second order, Elovich, Bangham, and intraparticle diffusion) were used to determine the best-fit equation for pertechnetate sorption. After 24 h, PGME-deta samples sorbed more than 98% of pertechnetate present, with maximum sorption capacity of 25.5 MBq g−1, showing good potential for remediation of slightly contaminated groundwater.  相似文献   
199.
This work provides a comprehensive Monte Carlo study of X-ray fluorescence computed tomography (XFCT) and K-edge imaging system, including the system design, the influence of various imaging components, the sensitivity and resolution under various conditions. We modified the widely used EGSnrc/DOSXYZnrc code to simulate XFCT images of two acrylic phantoms loaded with various concentrations of gold nanoparticles and Cisplatin for a number of XFCT geometries. In particular, reconstructed signal as a function of the width of the detector ring, its angular coverage and energy resolution were studied. We found that XFCT imaging sensitivity of the modeled systems consisting of a conventional X-ray tube and a full 2-cm-wide energy-resolving detector ring was 0.061% and 0.042% for gold nanoparticles and Cisplatin, respectively, for a dose of ~ 10 cGy. Contrast-to-noise ratio (CNR) of XFCT images of the simulated acrylic phantoms was higher than that of transmission K-edge images for contrast concentrations below 0.4%.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号