首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   37篇
  国内免费   3篇
电工技术   4篇
综合类   3篇
化学工业   154篇
金属工艺   19篇
机械仪表   11篇
建筑科学   15篇
能源动力   41篇
轻工业   37篇
水利工程   6篇
无线电   62篇
一般工业技术   170篇
冶金工业   56篇
原子能技术   7篇
自动化技术   116篇
  2024年   5篇
  2023年   9篇
  2022年   25篇
  2021年   36篇
  2020年   30篇
  2019年   22篇
  2018年   39篇
  2017年   36篇
  2016年   32篇
  2015年   22篇
  2014年   27篇
  2013年   67篇
  2012年   29篇
  2011年   43篇
  2010年   32篇
  2009年   31篇
  2008年   26篇
  2007年   21篇
  2006年   22篇
  2005年   14篇
  2004年   20篇
  2003年   14篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   2篇
  1994年   4篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1958年   1篇
排序方式: 共有701条查询结果,搜索用时 31 毫秒
111.
This paper presents experimental and numerical results of interfacial dynamics of liquid–liquid flows when an immiscible core liquid is introduced into a continuous liquid flow. The fully developed flow model predicts multiple solutions of the jet diameter over a range of dimensionless numbers: flow rate ratio, viscosity ratio, Bond and Capillary numbers. Experiments have been carried out using Polyethylene Glycol (PEG) and Canola oil to investigate the realizability of the three possible solutions predicted by the fully developed flow model. The measured values of inner fluid radii agree very well with the lower branch of the three branched solution while deviating from the top branch beyond a critical flow ratio value. This deviation is attributed to the fact that the flow develops a non-axisymmetric solution at this critical point. Computational fluid dynamics simulations have also been performed to examine the developing core annular flow and to compare the analytical solution results of liquid jet radius. The results predicted by numerical simulations agree very well with both the lower and upper branches of solution predicted by the analytical theory.  相似文献   
112.
The Rose Bengal is used as photosensitizer with d-Xylose as reductant and sodium lauryl sulphate (NaLS) as surfactant for the enhancement of the conversion efficiency and storage capacity of photogalvanic cell for its commercial viability. The observed value of the photogeneration of photopotential was 885.0 mV and photocurrent was 460.0 μA whereas maximum power of the cell was 407.10 μW. The observed power at power point was 158.72 μW and the conversion efficiency was 1.52%. The fill factor 0.3151 was experimentally determined at the power point of the cell. The rate of initial generation of photocurrent was 63.88 μA min−1. The photogalvanic cell so developed can work for 145.0 min in dark on irradiation for 165.0 min, i.e. the storage capacity of the photogalvanic cell is 87.87%. A simple mechanism for the photogeneration of photocurrent has also been proposed.  相似文献   
113.
The rise of Performance Based Design methodologies for fire safety engineering has increased the interest of the fire safety community in the concepts of risk and reliability. Practical applications have however been severely hampered by the lack of an efficient unbiased calculation methodology. This is because on the one hand, the distribution types of model output variables in fire safety engineering are not known and traditional distribution types as for example the normal and lognormal distribution may result in unsafe approximations. Therefore unbiased methods must be applied which make no (implicit) assumptions on the PDF type. Traditionally these unbiased methods are based on Monte Carlo simulations. On the other hand, Monte Carlo simulations require a large number of model evaluations and are therefore too computationally expensive when large and nonlinear calculation models are applied, as is common in fire safety engineering. The methodology presented in this paper avoids this deadlock by making an unbiased estimate of the PDF based on only a very limited number of model evaluations. The methodology is known as the Maximum Entropy Multiplicative Dimensional Reduction Method (ME-MDRM) and results in a mathematical formula for the probability density function (PDF) describing the uncertain output variable. The method can be applied with existing models and calculation tools and allows for a parallelization of model evaluations. The example applications given in the paper stem from the field of structural fire safety and illustrate the excellent performance of the method for probabilistic structural fire safety engineering. The ME-MDRM can however be considered applicable to other types of engineering models as well.  相似文献   
114.
The current study has investigated the influence of zirconium (Zr) addition to Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) alloys prepared using argon arc melting on the microstructure and impression properties at 448–498 K under constant stress of 380 MPa. Microstructural analysis of as-cast Mg–3Ca–xZr alloys showed grain refinement with Zr addition. The observed grain refinement was attributed to the growth restriction effect of Zr in hypoperitectic Mg–3Ca–0.3 wt% Zr alloys. Heterogeneous nucleation of α-Mg in properitectic Zr during solidification resulted in grain refinement of hyperperitectic Mg–3Ca–0.6 wt% Zr and Mg–3Ca–0.9 wt% Zr alloys. The hardness of Mg–3Ca–xZr alloys increased as the amount of Zr increased due to grain refinement and solid solution strengthening of α-Mg by Zr. Creep resistance of Mg–3Ca–xZr alloys increased with the addition of Zr due to solid solution strengthening of α-Mg by Zr. The calculated activation energy (Qa) for Mg–3Ca samples (131.49 kJ/mol) was the highest among all alloy compositions. The Qa values for 0.3, 0.6 and 0.9 wt% Zr containing Mg–3Ca alloys were 107.22, 118.18 and 115.24 kJ/mol, respectively.  相似文献   
115.
In the present work, one batch of prealloyed 6061Al powder was mixed with different lead compositions (5, 10, 15 vol.%) and another set with same composition was ball-milled for 5 h at 300 rpm. Microstructural features such as lattice constant, crystallite size, particle size and morphology were studied using XRD, particle size analyzer and SEM. Both the as-mixed as well as ball-milled powders were compacted at 300 MPa and sintered under N2 atmosphere for 1 h in tube furnace at 590 °C. The ball milling of 6061Al alloy powder improved sinter density and densification while lead addition showed negligible influence on these parameters. The microstructure of as-mixed 6061Al–Pb alloys exhibited equiaxial morphology whereas ball-milling resulted in elongated grains with uniform lead distribution. Quasi-static compressive mechanical behavior was investigated for 6061Al–Pb alloys at 1 × 10?3 s?1 strain rate. Results indicated that ultimate compressive and yield strength were sensitive to milling and lead volume fraction.  相似文献   
116.
117.
Nano size ZnO–Bi2O3 varistor precursor powders containing Y2O3 and Pr6O11 rare earth dopants were prepared by low temperature refluxing at 80 °C. Effect of rare earth dopants, densification by two-step sintering, evolution of microstructures and their influence on varistor properties were investigated. Chemically synthesized nano- precursor varistor powders produced controlled grain size in two-step sintering in which the average sintered ZnO grain size was reduced to at least half compared to the conventionally processed ZnO–Bi2O3 varistors. The study revealed that such grain size reduction is highly beneficial to attain enhanced varistor properties.  相似文献   
118.
This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by ~63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.  相似文献   
119.
Properties of pure metals can be enhanced by alloying with other metallic or non-metallic elements according to the need. However, as multiple alloying elements in an alloy may lead to the formation of many intermetallic compounds with complex microstructures and poor mechanical properties, new types of metallic alloys called high entropy alloys with at least five elements with equimolar ratios were developed. In this study, FeNiAlCuCrTi x Nb y (x, y = 0, 0.5, 1.0, 1.5) alloys have been prepared using Ar arc melting technique. Microstructural studies using scanning electron microscope and XRD showed that Ti addition promoted secondary BCC2 phase whereas, Nb acted as FCC stabilizer. Samples with combined Nb and Ti addition showed FCC1 and FCC2 structure with Nb-rich FCC2 dendritic phase as dominant phase. Though, individual Nb and Ti additions have resulted in increased hardness, combined additions have resulted in highest hardness of 797 HV under 1 kg load.  相似文献   
120.
ABSTRACT

Nanostructured Mg2Ni intermetallic compounds were synthesized by high-energy ball milling. Effect of milling time on structure and surface morphology of milled powders were studied using x-ray diffraction and scanning electron microscopy. Crystallite size and degree of crystallinity were confirmed by using transmission electron microscopy and selected area electron diffraction analysis. The particle size of 20 h milled electrode material is 230 nm and it reduced to 40 nm when the milling time is increased to 30 h. Further increase in the milling time reduces the particles size drastically and starts agglomerating. In order to understand the effect of milling time on reaction rates, differential thermal analysis was performed. Activation energy of the milled powders was calculated using Kissinger analysis. 30 h milled powder exhibits lower activation energy than others. Cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge studies were done on the prepared electrode materials. 30 h milled electrode material delivers maximum discharge capacity with a superior capacity retention after 20 cycles at 20 mAg?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号