首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   123篇
  国内免费   11篇
电工技术   42篇
综合类   4篇
化学工业   563篇
金属工艺   50篇
机械仪表   85篇
建筑科学   80篇
矿业工程   1篇
能源动力   116篇
轻工业   185篇
水利工程   34篇
石油天然气   44篇
无线电   292篇
一般工业技术   488篇
冶金工业   99篇
原子能技术   16篇
自动化技术   342篇
  2024年   8篇
  2023年   49篇
  2022年   94篇
  2021年   134篇
  2020年   97篇
  2019年   103篇
  2018年   135篇
  2017年   109篇
  2016年   131篇
  2015年   84篇
  2014年   135篇
  2013年   218篇
  2012年   124篇
  2011年   155篇
  2010年   105篇
  2009年   86篇
  2008年   67篇
  2007年   55篇
  2006年   63篇
  2005年   35篇
  2004年   44篇
  2003年   27篇
  2002年   19篇
  2001年   26篇
  2000年   24篇
  1999年   18篇
  1998年   18篇
  1997年   9篇
  1996年   20篇
  1995年   15篇
  1994年   15篇
  1993年   14篇
  1992年   19篇
  1991年   14篇
  1990年   10篇
  1989年   11篇
  1988年   14篇
  1987年   18篇
  1986年   11篇
  1985年   16篇
  1984年   13篇
  1983年   13篇
  1982年   9篇
  1981年   5篇
  1979年   9篇
  1978年   8篇
  1977年   5篇
  1976年   10篇
  1975年   6篇
  1974年   5篇
排序方式: 共有2441条查询结果,搜索用时 11 毫秒
91.
In this study, pulsed laser ablation technique, also known as pulsed laser deposition (PLD), is used to design and grow zinc oxide (ZnO) nanostructures (nanoworms, nanowalls, and nanorods) by template/seeding approach for gas-sensing applications. Conventionally, ZnO nanostructures used for gas-sensing have been usually prepared via chemical route, where the 3D/2D nanostructures are chemically synthesized and subsequently plated on an appropriate substrate. However, using pulsed laser ablation technique, the ZnO nanostructures are structurally designed and grown directly on a substrate using a two-step temperature-pressure seeding approach. This approach has been optimized to design various ZnO nanostructures by understanding the effect of substrate temperature in the 300-750°C range under O2 gas pressure from 10-mTorr to 10 Torr. Using a thin ZnO seed layer as template that is deposited first at substrate temperature of ~300°C at background oxygen pressure of 10 mTorr on Si(100), ZnO nanostructures, such as nanoworms, nanowalls, and nanorods (with secondary flower-like growth) were grown at substrate temperatures and oxygen background pressures of (550°C and 2 Torr), (550°C and 0.5 Torr), and (650°C and 2 Torr), respectively. The morphology and the optical properties of ZnO nanostructures were examined by Scanning Electron Microscope (SEM-EDX), X-ray Diffraction (XRD), and photoluminescence (PL). The PLD-grown ZnO nanostructures are single-crystals and are highly oriented in the c-axis. The vapor-solid (VS) model is proposed to be responsible for the growth of ZnO nanostructures by PLD process. Furthermore, the ZnO nanowall structure is a very promising nanostructure due to its very high surface-to-volume ratio. Although ZnO nanowalls have been grown by other methods for sensor application, to this date, only a very few ZnO nanowalls have been grown by PLD for this purpose. In this regard, ZnO nanowall structures are deposited by PLD on an Al2O3 test sensor and assessed for their responses to CO and ethanol gases at 50 ppm, where good responses were observed at 350 and 400°C, respectively. The PLD-grown ZnO nanostructures are very excellent materials for potential applications such as in dye-sensitized solar cells, perovskite solar cells and biological and gas sensors.  相似文献   
92.
Thin films of oxazine (OXZ) were prepared using thermal evaporation technique under high vacuum. The thermogravimetric analysis (TGA/DSC) was investigated. Thin films of nano-crystalline OXZ were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Temperature dependence of the DC electrical conductivity was investigated in the temperature range 300–425 K. Measurements revealed that the DC behavior of the films can be described by Mott's one-dimensional variable range hopping (VRH) model in the entire temperature range. The AC conductivity of the sample is found to be proportional to ωs. The temperature dependence of the AC conductivity and the frequency exponent, s is reasonably well interpreted in terms of the correlated barrier-hopping CBH model. Frequency dependence of the capacitance in the frequency range 42 Hz–5 MHz indicates that the capacitance is strongly frequency dependent. The capacitance was determined to decrease with increasing frequency at low frequency and less rapidly at higher frequencies. This is quantitatively interpreted using an equivalent circuit model.  相似文献   
93.
Electropolishing treatment (EP) can be used to remove the biofilm formed on AISI-304 stainless steel surface and protect it against bacterial colonization. High levels of both smoothness and brightness of AISI-304 stainless steel surfaces can be attained by using electropolishing technique, where the sample was fixed as anode and a suitable current was applied into electrolytic cell containing H3PO4. AISI-304 stainless steel was exposed to stabilized mixed culture of sulfate reducing bacteria (SMC-SRB) under different conditions as, temperature, pH, salinity, incubation time and inoculum size. The present study recorded the main indicators of bacterial activity such as S−−, Fe++, most probable number (MPN) of SRB and weight loss (corrosion rate) by milinches per year (mpy). The results revealed that the bacterial counts were obviously decreased under all conditions of bacterial biofilm formation after electropolishing treatment.  相似文献   
94.
Pencil-like zinc oxide(ZnO) nanowire was synthesized on Si(111) substrate through a simple vapor phase method using a mixture of zinc oxide and graphite as the source material. The source inside a quartz tube created a Zn-rich vapor that facilitated the formation and growth of ZnO nanowires. Field emission scanning electron microscopic studies indicated that pencil-like ZnO nanowires had a size of the range from 50 to 150 nm in diameter and several microns in length. X-ray diffraction was used to investigate the crystal structure of ZnO nanowires. Raman scattering and photoluminescence were applied to characterize the optical properties of the pencils. The growth mechanism of the nanopencils was discussed based on the growth conditions.  相似文献   
95.
The physical and chemical properties of polystyrene grafted and sulfonated polytetrafluoroethylene (PTFE‐graft‐PSSA) membranes prepared by radiation‐induced grafting of styrene onto commercial PTFE films using simultaneous irradiation technique followed by a sulfonation reaction are evaluated. The investigated properties include water uptake, ion exchange capacity, hydration number and ionic conductivity. All properties are correlated with the amount of grafted polystyrene (degree of grafting). The thermal stability of the membrane evaluated by thermal gravimetric analysis (TGA) is compared with that of original and grafted PTFE films. The membrane surface structural properties are analysed by electron spectroscopy for chemical analysis (ESCA). Membranes having degrees of grafting of 18 % and above show a good combination of physical and chemical properties that allow them to be proposed for use as proton conducting membranes, provided that they have sufficient chemical and mechanical stability. © 2000 Society of Chemical Industry  相似文献   
96.
Proton exchange membranes were prepared by radiation‐induced grafting of styrene onto commercial poly(tetrafluoroethylene‐co‐hexafluoropropylene) films using a simultaneous irradiation technique followed by a sulfonation reaction. The resulting membranes were characterized by measuring their physicochemical properties such as water uptake, ion exchange capacity, hydration number, and proton conductivity as a function of the degree of grafting. The thermal properties (melting and glass transition temperatures) and thermal stability of the membrane were also investigated using differential scanning calorimetry and thermal gravimetric analysis, respectively. Membranes having degrees of grafting of 16% and above showed proton conductivity of the magnitude of 10−2 Ω−1 cm−1 at room temperature, as well as thermal stability at up to 290°C under an oxygen atmosphere. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2443–2453, 2000  相似文献   
97.
The simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied at room temperature. The effects of grafting conditions (type of solvent, irradiation dose, dose rate, and monomer concentration) were investigated. The degree of grafting was found to be dependent on the investigated grafting conditions. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be of 0.5 and 1.3 orders, respectively. The results suggest that grafting proceeds by the so‐called front mechanism in which the grafting front starts at the surface of the film and moves internally toward the middle of the film by successive diffusion of styrene through the grafted layers. Some selected properties of the grafted films were evaluated in correlation with the degree of grafting. We found that the grafted FEP films possess good mechanical stability, which encourages their use for the preparation of proton exchange membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 220–227, 2000  相似文献   
98.
A time‐dependent multiphysics, multiphase model is proposed and fully developed here to describe carbon nanotubes (CNTs) fabrication using chemical vapor deposition (CVD). The fully integrated model accounts for chemical reaction as well as fluid, heat, and mass transport phenomena. The feed components for the CVD process are methane (CH4), as the primary carbon source, and hydrogen (H2). Numerous simulations are performed for a wide range of fabrication temperatures (973.15–1273.15 K) as well as different CH4 (500–1000 sccm) and H2 (250–750 sccm) flow rates. The effect of temperature, total flow rate, and feed mixture ratio on CNTs growth rate as well as the effect of amorphous carbon formation on the final product are calculated and compared with experimental results. The outcomes from this study provide a fundamental understanding and basis for the design of an efficient CNT fabrication process that is capable of producing a high yield of CNTs, with a minimum amount of amorphous carbon. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   
99.
Nafion 117 membrane was investigated for the removal of Ni(II), Co(II), Pb(II), Cu(II) and Ag(I) metal ions from their synthesized aqueous solutions. The different variables affecting the adsorption capacity of the membrane such as contact time, initial metal ion concentration in the feed solution, pH of the sorption medium and temperature of the solution were investigated on a batch sorption basis. The affinity of Nafion 117 membrane towards heavy metal ions was found to increase in the sequence of Cu(II), Ni(II), Co(II), Pb(II), and Ag(I) with adsorption equilibrium achieved after 30 min for all metal ions. Among all parameters, pH has the most significant effect on the adsorption capacity, particularly in the range of 3.1-5.9. The variation of temperature in the range of 25-65 °C was found to have no significant effect on the adsorption capacity. Nafion 117 membrane was found to have high stability combined with repeated regeneration ability and can be suggested for effective removal of heavy metal ions such as Cu(II), Ni(II) and Co(II) from aqueous solutions.  相似文献   
100.
The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号