首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   26篇
  国内免费   7篇
电工技术   28篇
化学工业   201篇
金属工艺   23篇
机械仪表   17篇
建筑科学   28篇
能源动力   36篇
轻工业   58篇
水利工程   2篇
无线电   32篇
一般工业技术   141篇
冶金工业   58篇
原子能技术   13篇
自动化技术   54篇
  2023年   10篇
  2022年   13篇
  2021年   16篇
  2020年   7篇
  2019年   9篇
  2018年   17篇
  2017年   9篇
  2016年   14篇
  2015年   14篇
  2014年   17篇
  2013年   39篇
  2012年   27篇
  2011年   42篇
  2010年   30篇
  2009年   42篇
  2008年   36篇
  2007年   34篇
  2006年   34篇
  2005年   27篇
  2004年   16篇
  2003年   27篇
  2002年   29篇
  2001年   18篇
  2000年   17篇
  1999年   11篇
  1998年   30篇
  1997年   13篇
  1996年   15篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
31.
Partitioning of organic substrates by thermoresponsive polymer having N‐acryloylaminoalcohol moieties in aqueous phase has been studied. Thermoresponsive polymers, such as poly(N‐isopropylacrylamide) (PNIPAAm) and poly(NIPAAm‐coN‐acryloyl‐(±)‐alaninol) (poly(NIPAAm‐co‐HIPAAm)), were found to concentrate several organic substrates into the hydrophobic field generated during their phase transition. The amount of the substrates recoverd from the polymer phase mainly depended on the hydrophobicity of the substrates. Aqueous solutions of PNIPAAm (lower critical solution temperature, LCST = 33°C) and poly(NIPAAm‐co‐HIPAAm) (LSCT = 41°C) containing 1‐phenylethanol showed LCSTs at 22°C and 33°C, respectively. The changes of LCSTs indicate that specific interactions such as hydrogen bonding between the side chain functionalities of the polymers and the substrates influence the phase transition behavior. Moreover, new optically active polymers having chiral aminoalcohol moieties have been synthesized by copolymerizations of NIPAAm with N‐acryloylaminoalcohols such as N‐acryloyl‐(S)‐alaninol and N‐acryloyl‐(S)‐prolinol. The (R)/(S) ratio of 1‐phenylethanol recovered from poly(NIPAAm‐coN‐acryloyl‐(S)‐alaninol) and poly(NIPAAm‐coN‐acryloyl‐(S)‐prolinol) were determined to be 75/25 and 68/32, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3458–3464, 2013  相似文献   
32.
Thermal insulators were fabricated by freezing gelatin gels containing calcined kaolinite with alumina nanofibers, followed by sintering. The resultant porosity could be varied from 81.0% to 89.8% by solid loadings in the initial slurry. The relationship among porosity, microstructure, compressive strength, and thermal conductivity was examined. The compressive strength and thermal conductivities of the insulators prepared with initial solid loadings from 3 to 6 vol% ranged from 11.6 to 56.7 MPa and from .25 to .46 W/mK, respectively. Those properties were also estimated by simulation using modeling of overall pore morphology, resulting in good agreement.  相似文献   
33.
A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer and a conventional reaction‐bonded (RB) sintering of the composite. The α‐SiC/novolac‐type phenolic composite was carbonized at 800°C for 2 h in N2 gas and then reacted with the molten silicon at 1450°C for 30 min under vacuum, resulting in the macroporous RB‐SiC with an open porosity of 48% and relatively large pore size of ~110 μm. The compressive strength of the macroporous RB‐SiC was 113 MPa, which is relatively high compared to those reported for macroporous SiC of equivalent porosities and pore sizes.  相似文献   
34.
The scavenging of a resistive siliceous phase via the addition of Al2O3 was studied, using imaging secondary-ion mass spectroscopy (SIMS), given the improved grain-boundary conductivity in 8-mol%-yttria-stabilized zirconia (8YSZ). The grain-boundary resistivity in 8YSZ decreased noticeably with the addition of 1 mol% of Al2O3. Strong SiO2 segregation at the grain boundaries was observed in a SIMS map of pure 8YSZ that contained 120 ppm of SiO2 (by weight). The addition of 1 mol% of Al2O3 caused the SiO2 to gather around the Al2O3 particles. The present observations provided direct and visual evidence of SiO2 segregation at the grain boundaries (which had a deleterious effect on grain-boundary conductivity) and the scavenging of SiO2 via Al2O3 addition.  相似文献   
35.
Direct synthesis of H2O2 acid solutions was studied using a gas-diffusion cathode prepared from activated carbon (AC), vapor-growing-carbon-fiber (VGCF) and poly-tetra-fluoro-ethylene (PTFE) powders, with a new H2/O2 fuel cell reactor. O2 reduction to H2O2 was remarkably enhanced at the three-phase boundary (O2(g)-electrode(s)-acid(l)) at the [AC + VGCF] cathode. Fast diffusion processes of O2 to the active surface and of H2O2 to the bulk acid solutions were essential for H2O2 accumulation. Synergy of AC and VGCF was observed for the H2O2 formation. RRDE and cyclic voltammetry studies indicated that the surface of AC functioned as the active phase for O2 reduction to HO2, and VGCF functioned as an electron conductor and a promoter to convert HO2 to H2O2. A maximum H2O2 concentration of 353 mM (1.2 wt%) was accomplished under short-circuit conditions (current density 12.7 mA cm−2, current efficiency 40.1%, geometric area of cathode 1.3 cm2, reaction time 6 h).  相似文献   
36.
For gas metal arc welding, the effect of CO2 mixture in a shielding gas on a metal transfer process was investigated through the observation of the plasma characteristics and dynamic behaviour at the droplet’s growth-separation-transfer by the temperature measurement methods which were suitable, respectively, to the argon plasma region and the metal plasma region. At the present experimental conditions, the metal transfer process was a spray transfer type with 100%Ar shielding gas. On the other hand, with 85%Ar + 15%CO2 shielding gas, the metal transfer process was a globular transfer type in which the arc length was shorter, the width was narrower and the time interval of the droplet separation was longer. For both shielding gases, the metal plasma region near the arc central axis exhibited 6500–7500 K, which was lower than the argon plasma region. With 85%Ar + 15%CO2 shielding gas, when the metal droplet grew below the electrode wire, the region below the droplet has a high plasma temperature and a high concentration of iron vapour which surrounded the droplet. The region also exhibited a remarkably high electron number density. At the spray transfer process, the argon plasma region had an electron number density twice as high as the metal plasma region. Meanwhile, at the globular transfer process, the metal plasma region had a higher electron number density than the argon plasma region, which corresponded to a higher electrical conductivity near the arc axis. This means that the electric current goes through the arc axis easier than the spray transfer process. This condition increases the temperature below the droplet. The thermal expansion increases the force preventing the droplet from falling down. In consequence, the metal transfer takes the globular transfer type.  相似文献   
37.
利用熔池振荡及熔池谐振信号的检测,以熔池自身固有振荡频率与熔池尺寸的内在关系测定熔池金属表面张力,研究了薄板SUS304不锈钢TIG焊不同熔池尺寸的表面张力变化以及活性剂对熔池表面张力的影响。实验研究方法为焊接熔池表面张力测定中的最初应用。  相似文献   
38.
Gas metal arc welding (GMAW) under pure argon shielding gas atmosphere (pure argon-GMAW) is suitable to obtain a high-strength and high toughness welded joint. However, it is difficult that pure argon-GMA welding is applied practically welding structure because of arc instability. In order to perform stable pure argon-GMA welding, duplex current feeding GMAW (DCF-GMAW) has been developed. The DCF-GMAW consists of primary GMA welding current and secondary welding current by constant-current power resource. DFC-GMAW can feed larger current near wire tip. This effect makes that weld penetration depth is deeper, weld bead shape is improved using DCF-GMAW.  相似文献   
39.
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the “turn-and-run” behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)–sperm interaction reflect the specific features of the spawning process in this species.  相似文献   
40.
Endothelial cells acquire different phenotypes to establish functional vascular networks. Vascular endothelial growth factor (VEGF) signaling induces endothelial proliferation, migration, and survival to regulate vascular development, which leads to the construction of a vascular plexuses with a regular morphology. The spatiotemporal localization of angiogenic factors and the extracellular matrix play fundamental roles in ensuring the proper regulation of angiogenesis. This review article highlights how and what kinds of extracellular environmental molecules regulate angiogenesis. Close interactions between the vascular and neural systems involve shared molecular mechanisms to coordinate developmental and regenerative processes. This review article focuses on current knowledge about the roles of angiogenesis in peripheral nerve regeneration and the latest therapeutic strategies for the treatment of peripheral nerve injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号