首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5618篇
  免费   339篇
  国内免费   11篇
电工技术   109篇
综合类   9篇
化学工业   1594篇
金属工艺   79篇
机械仪表   167篇
建筑科学   215篇
矿业工程   5篇
能源动力   187篇
轻工业   550篇
水利工程   41篇
石油天然气   23篇
无线电   447篇
一般工业技术   927篇
冶金工业   263篇
原子能技术   30篇
自动化技术   1322篇
  2024年   6篇
  2023年   85篇
  2022年   248篇
  2021年   322篇
  2020年   174篇
  2019年   200篇
  2018年   207篇
  2017年   207篇
  2016年   250篇
  2015年   212篇
  2014年   270篇
  2013年   447篇
  2012年   393篇
  2011年   449篇
  2010年   333篇
  2009年   330篇
  2008年   292篇
  2007年   253篇
  2006年   214篇
  2005年   151篇
  2004年   123篇
  2003年   94篇
  2002年   86篇
  2001年   63篇
  2000年   56篇
  1999年   57篇
  1998年   79篇
  1997年   64篇
  1996年   52篇
  1995年   26篇
  1994年   36篇
  1993年   29篇
  1992年   12篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   6篇
  1987年   11篇
  1985年   12篇
  1984年   8篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   10篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有5968条查询结果,搜索用时 15 毫秒
101.
The aim of this paper is to analyze how the uncertainties in modelling the geometry and the material properties of a human bone affect the predictions of a finite-element model derived from computed tomography (CT) data. A sensitivity analysis, based on a Monte Carlo method, was performed using three femur models generated from in vivo CT datasets, each subjected to two different loading conditions. The geometry, the density and the mechanical properties of the bone tissue were considered as random input variables. Finite-element results typically used in biomechanics research were considered as statistical output variables, and their sensitivity to the inputs variability assessed. The results showed that it is not possible to define a priori the influence of the errors related to the geometry definition process and to the material assignment process on the finite-element analysis results. The errors in the geometric representation of the bone are always the dominant variables for the stresses, as was expected. However, for all the variables, the results seemed to be dependent on the loading condition and to vary from subject to subject. The most interesting result is, however, that using the proposed method to build a finite-element model of a femur from a CT dataset of the quality typically achievable in the clinical practice, the coefficients of variation of the output variables never exceed the 9%. The presented method is hence robust enough to be used for investigating the mechanical behavior of bones with subject-specific finite-element models derived from CT data taken in vivo.  相似文献   
102.
We report on a mutual correlation between the substrate temperature during semiconductor deposition and the surface energy of the gate dielectric on the charge carrier mobility in bottom gate top contact organic field effect transistors (OFETs) with N,N′-diphenyl-3,4,9,10-perylene tetracarboxylic diimide (DP-PDI) as organic semiconductor.  相似文献   
103.
Degenerative disc disease (DDD) has become a significant public health issue worldwide. This can result in loss of spinal function affecting patient health and quality of life. Artificial total disc replacement (A-TDR) is an effective approach for treating symptomatic DDD that compensates for lost functionality and helps patients perform daily activities. However, because current A-TDR devices lack the unique structure and material characteristics of natural intervertebral discs (IVDs), they fail to replicate the multidirectional stiffness needed to match physiological motions and characterize anisotropic behavior. It is still unclear how the multidirectional stiffness of the disc is affected by structural parameters and material characteristics. Herein, a bioinspired intervertebral disc (BIVD-L) based on a representative human lumbar segment is developed. The proposed BIVD-L reproduces the multidirectional stiffness needed for the most common physiological kinematic behaviors. The results demonstrate that the multidirectional stiffness of the BIVD-L can be regulated by structural and material parameters. The results of this research deepen knowledge of the biomechanical behavior of the human lumbar disc and may provide new inspirations for the design and fabrication of A-TDR devices for both engineering and functional applications.  相似文献   
104.
Perovskite solar cells (PSCs) are demonstrating great potential to compete with second generation photovoltaics. Nevertheless, the key issue hindering PSCs full exploitation relies on their stability. Among the strategies devised to overcome this problem, the use of carbon nanostructures (CNSs) as hole transporting materials (HTMs) has given impressive results in terms of solar cells stability to moisture, air oxygen, and heat. Here, the use of a HTM based on a poly(3‐hexylthiophene) (P3HT) matrix doped with organic functionalized single walled carbon nanotubes (SWCNTs) and reduced graphene oxide in PSCs is proposed to achieve higher power conversion efficiencies (η = 11% and 7.3%, respectively) and prolonged shelf‐life stabilities (480 h) in comparison with a benchmark PSC fabricated with a bare P3HT HTM (η = 4.3% at 480 h). Further endurance test, i.e., up to 3240 h, has shown the failure of all the PSCs based on undoped P3HT, while, on the contrary, a η of ≈8.7% is still detected from devices containing 2 wt% SWCNT‐doped P3HT as HTM. The increase in photovoltaic performances and stabilities of the P3HT‐CNS‐based solar cell, with respect to the standard P3HT‐based one, is attributed to the improved interfacial contacts between the doped HTM and the adjacent layers.  相似文献   
105.
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.  相似文献   
106.
The aim of this paper is to empirically test whether interlinking patterns between higher education institutions (HEIs) conform to a document model, where links are motivated by webpage content, or a social relationship model, where they are markers of underlying social relationships between HEIs. To this aim, we analyzed a sample of approximately 400 European HEIs, using the number of pages on their web domains and the total number of links sent and received; in addition we test whether these two characteristics are associated with organizational size, reputation, and the volume of teaching and research activities. Our main findings are as follows: first, the number of webpages of HEI websites is strongly associated with their size, and to a lesser extent, with the volume of their educational activities, research orientation, and reputation; differences between European countries are rather limited, supporting the insight that the academic Web has reached a mature stage. Second, the distribution of connectivity (as measured by the total degree of HEI’s) follows a lognormal distribution typical of social networks between organizations, while counts of weblinks can be predicted with good precision from organizational characteristics. HEIs with larger websites tend to send and receive more links, but the effect is rather limited and does not fundamentally modify the resulting network structure. We conclude that aggregated counts of weblinks between pairs of HEIs are not significantly affected by the web policies of HEIs and thus can be considered as reasonably robust measures. Furthermore, interlinking should be considered as proxies of social relationships between HEIs rather than as reputational measures of the content published on their websites.  相似文献   
107.
108.
Modern cloud data centers rely on server consolidation (the allocation of several virtual machines on the same physical host) to minimize their costs. Choosing the right consolidation level (how many and which virtual machines are assigned to a physical server) is a challenging problem, because contemporary multitier cloud applications must meet service level agreements in face of highly dynamic, nonstationary, and bursty workloads. In this paper, we deal with the problem of achieving the best consolidation level that can be attained without violating application service level agreements. We tackle this problem by devising fuzzy controller for consolidation and QoS (FC2Q), a resource management framework exploiting feedback fuzzy logic control, that is able to dynamically adapt the physical CPU capacity allocated to the tiers of an application in order to precisely match the needs induced by the intensity of its current workload. We implement FC2Q on a real testbed and use this implementation to demonstrate its ability of meeting the aforementioned goals by means of a thorough experimental evaluation, carried out with real‐world cloud applications and workloads. Furthermore, we compare the performance achieved by FC2Q against those attained by existing state‐of‐the‐art alternative solutions, and we show that FC2Q works better than them in all the considered experimental scenarios. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
109.
110.
For thin film solar cells, there is a large gap between the record efficiencies and panel power output. It was found that for a “typical industrial” CIGS cell efficiency of 15.5%, the efficiency drops to 11.7% when it is operating under the circumstances of a monolithically integrated solar panel. Part of this gap is due to limited conductivity and transmittance of the front contact. By application of a metallic grid, the conductivity can be improved by over two order of magnitude at a transmittance loss of only a few percent as was shown experimentally. In addition, modeling was used to quantify the impact of such approach on the power output of monolithically integrated solar panels. This model includes optical and resistive losses, as well as related losses caused by the inhomogeneity of the operating voltage over the surface. Both power output and the different types of losses are mapped out for various cell configurations. Optimization of transparent conductive oxide resistance, cell length, finger width, and finger spacing of grids was performed and led to an efficiency improvement from 11.7% to 13.8% when the front contact is upgraded with a metallic grid consisting of 20 µm wide parallel fingers positioned perpendicular to the interconnect. Further optimization for a wide variety of cell and grid configurations show that for a technically more feasible size of 100 µm wide fingers, the calculated efficiency is still 13.5%. Finally, the power output is mapped out for a large number of configurations as to create an overview and insight in the interdependencies of cell configuration and finger dimensions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号