首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   44篇
  国内免费   1篇
电工技术   45篇
综合类   1篇
化学工业   281篇
金属工艺   54篇
机械仪表   32篇
建筑科学   58篇
矿业工程   1篇
能源动力   40篇
轻工业   184篇
水利工程   38篇
石油天然气   6篇
无线电   202篇
一般工业技术   200篇
冶金工业   270篇
原子能技术   47篇
自动化技术   99篇
  2023年   7篇
  2022年   16篇
  2021年   43篇
  2020年   19篇
  2019年   24篇
  2018年   32篇
  2017年   29篇
  2016年   35篇
  2015年   29篇
  2014年   43篇
  2013年   90篇
  2012年   72篇
  2011年   83篇
  2010年   63篇
  2009年   73篇
  2008年   72篇
  2007年   62篇
  2006年   55篇
  2005年   43篇
  2004年   40篇
  2003年   46篇
  2002年   47篇
  2001年   32篇
  2000年   22篇
  1999年   31篇
  1998年   89篇
  1997年   55篇
  1996年   34篇
  1995年   42篇
  1994年   28篇
  1993年   35篇
  1992年   15篇
  1991年   18篇
  1990年   19篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1977年   11篇
  1976年   4篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1558条查询结果,搜索用时 15 毫秒
61.
The energy-harvesting ability of the lead-free ferroelectric Ba(Zr,Ti)O3 was investigated and greatly enhanced using the Kim novel electrothermodynamic cycle for low-temperature application. Ba(Zr,Ti)O3 was synthesized with a Zr:Ti ratio of 10:90 (BZT10) by hot-press sintering, which exhibited a mix relaxor-ferroelectric behavior. For power generation using the Kim cycle with low and high temperatures of TL = 25°C, TH = 120°C, the most optimized temperature pattern occurred for a heating time of 12.5 s and a cooling time of 22.5 s. Under these conditions, the electric field increased during the novel isodisplacement process, and the displacement variation in the isoelectric step reached the highest value and maximized the BZT10 cycle loop area. Applying these conditions while lowering TL to 20°C, an energy density ND = 504 mJ/cm3 was achieved. This value is the highest obtained energy density in a practical test for lead-free ferroelectric bulk material in the BaTiO3 family.  相似文献   
62.
A series of carbazole‐containing water‐dispersible poly(acrylic acid)‐b‐(9‐(4‐vinylbenzyl)‐9H‐carbazole) block copolymers (poly(AA)‐b‐poly(VBK)) and water‐soluble poly(methacrylic acid‐ran‐(9‐(4‐vinylbenzyl)‐9H‐carbazole)) (poly(MAA‐ran‐VBK)) random copolymers were synthesised in a controlled manner (i.e. low polydispersities $(\overline {M_{{\rm w}} } /\overline {M_{n} } < 1.3)$ by nitroxide‐mediated polymerisation (NMP) using an SG1‐based alkoxyamine initiator, BlocBuilder. Poly(AA)‐b‐poly(VBK) block copolymers were most easily accessed by using poly(AA) in its protected form as the macroinitiator for the 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) block. Controlled polymerisation of MAA was accomplished using an excess of 10 mol.% SG1 relative to BlocBuilder with VBK as controlling co‐monomer (initial molar feed content fVBK,0 = 0.03–0.20) in dimethylformamide at 80°C. Poly(MAA‐ran‐VBK) copolymers with a final VBK molar composition of FVBK < 0.30 resulted in water‐soluble copolymers. In addition, as macroinitiators, poly(MAA‐ran‐VBK)s were sufficiently pseudo‐living to reinitiate a second batch of monomer (90 mol.% methyl methacrylate with styrene) in organic solvent and by ab initio, surfactant‐free emulsion polymerisation. In both cases, low polydispersity, amphiphilic block copolymers resulted $(\overline {M_{{\rm w}} } /\overline {M_{{\rm n}} } < 1.3)$ . © 2012 Canadian Society for Chemical Engineering  相似文献   
63.
Antifouling coatings for ship hulls are a very important topic in coating research. They are essential with respect to fuel consumption of ships: without antifouling coating, biological species start to adhere to the ship’s exterior, leading to a gradual increase in fuel consumption. To date, the working principle of most of the paint systems applied is based on slow release of toxins in time (self-polishing coatings). In this article, we discuss the environmental impact of marine antifouling coatings based on quantitative data available from literature. In addition, we critically review hydrophilic antifouling and hydrophobic foul-release coatings as toxin-free alternatives and discuss their potential for replacing self-polishing coatings.  相似文献   
64.
The activity of fresh and hydrothermally aged zeolite-based catalysts in the NH3-selective catalytic reduction (SCR) reaction with excess of oxygen were studied. In addition, the effect of NO2 in the gas feed as well as the acidity of the catalysts for the SCR activity was investigated. The studied catalysts were hydrogen, copper, iron and silver ion exchanged ZSM-5, mordenite, beta, ferrierite, and Y-zeolites. The investigation verifies that the zeolite-based catalysts are very promising for the ammonia SCR reaction. Especially, the activity at low and high temperatures was higher than the activity of commercial vanadia-based catalysts. From the studied catalysts, Fe-beta was the most potential one. The presence of NO2 in the inlet flow enhanced significantly the catalytic activity of fresh and hydrothermally aged zeolite catalysts. This suggests that the oxidation of NO to NO2 is probably the rate-determining step for the SCR reaction.  相似文献   
65.
66.
The reactivity of BaZrO3 with CO2 has been addressed as one of the major challenges with BaZrO3‐based electrolytes in protonic ceramic fuel cells. Here, we present a study of the effect of CO2 exposure on BaZrO3‐materials at elevated temperatures. Dense BaZr1?xYxO3?x/2 (x = 0, 0.05, 0.1, 0.2) and BaCe0.2Zr0.7Y0.1O2.95 ceramics were prepared by sintering of powder prepared by spray pyrolysis. The Vickers indentation method was used to determine the hardness and estimate the fracture toughness of pristine materials as well as the corresponding materials exposed to CO2. Formation of BaCO3 on the surface of exposed ceramics was confirmed by X‐ray diffraction and electron microcopy. The reaction resulted in formation of Ba‐deficient perovskite at the exposed surface. The reaction with CO2 was most pronounced at 650°C compared to the other temperatures applied in the study. The reactivity was also shown to depend on the Y‐content and the grain size and was most pronounced for BaZr0.9Y0.1O2.95. The reaction with CO2 was observed to have a profound effect on the fracture toughness of the ceramics, demonstrating a depression of the mechanical stability of the materials. The results are discussed with respect to the chemical and mechanical stability of BaZrO3 materials, with particular emphasis on the composition and grain size.  相似文献   
67.
The effect of filler concentration on the dielectric properties in the ultralow-frequency region and on the electrical conductivity was studied for ethylene propylene rubber. First, we investigated the relation between the electrical conductivity and filler concentration: as the volume fraction of fillers qa increased, the conductivity decreased in the low filler concentration region but increased abruptly in the high filler concentration region. The decrease and increase in conductivity can be explained with the action of carrier traps at the interface between EPR and fillers and with the formation of highly conductive paths of filler across the sample, respectively. Secondly, we studied the dielectric properties in the ultralow-frequency region which was obtained from the discharge current. As qa increased, the relaxation time decreased in the low filler concentration region and then rose in the high filler concentration region. The polarization in the high filler concentration region can be explained by two-layer interfacial polarization between filler and rubber  相似文献   
68.
A very high characteristic temperature T0 of 150 K (25-70°C) or 450 K (25-50°C) and an almost constant differential quantum efficiency operation in the temperature range of 25-70°C were achieved in 1.3-μm GaInAsP-InP strained-layer quantum-well (SL-QW) lasers by use of a novel temperature dependent reflectivity (TDR) mirror composed of multiple quarter-lambda thickness α-Si-SiOx dielectric films with quarter-lambda shift in the vicinity of center portion, The mechanism of high T0 and constant differential quantum efficiency were explained using the structural parameters, transparent current density and gain coefficient of a SL-QW laser that are derived experimentally. The effect of TDR mirror was confirmed by measuring the temperature dependence of net gain of a SL-QW laser with TDR mirror. It was found that less temperature dependent net gain due to the decrease of mirror loss with temperature played an important role for improving the temperature characteristics of threshold current. Almost constant differential quantum efficiency over a wide temperature range is attributed to the increase of the facet reflectivity with temperature  相似文献   
69.
The fatty acid-binding proteins are hypothesized to be involved in cellular fatty acid transport and trafficking. We established CaCo-2 cells stably transfected with intestinal fatty acid-binding protein (I-FABP) and examined how the expression of this protein may influence fatty acid metabolism. I-FABP expression was detectable in I-FABP-transfected cells, whereas parent CaCo-2 cells as well as mock-transfected cells failed to express detectable levels of I-FABP mRNA or protein at any stage of differentiation. For studies of lipid metabolism, cells were incubated with [14C]oleic acid in taurocholate micelles containing monoolein, and distribution of labeled fatty acid in cellular and secreted lipids was examined. In one transfected cell clone, expressing the highest level of I-FABP, labeled cellular triacylglycerol increased approximately twofold as compared to control cells. The level of intracellular triacylglycerol in two other I-FABP-transfected clones resembled that of control cells. However, secretion of triacylglycerol was markedly reduced in all the I-FABP-expressing cell lines. Our data suggest that increased expression of I-FABP leads to reduced triacylglycerol secretion in intestinal cells.  相似文献   
70.
The activation of the pozzolanic reaction of fly ash in portland cement paste immersed in sulfate solution has been studied. Mixtures of two Spanish fly ashes (ASTM class F) with 0%, 15%, and 35% replacement of portland cement by fly ash were immersed in Na2SO4 solution, of 2880 ppm SO42− concentration, for a period of 90 days. The resistance of the different mixtures to the sulfate attack was evaluated using the Koch-Steinegger test. The results showed that all of the mixtures were sulfate resistant, despite the high Al2O3 content of the fly ash. The diffusion of SO42− and Na+ ions through the pore solution activated the pozzolanic reactivity of the fly ashes, causing microstructural changes, which were characterized by X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). As a result, the flexural strength of the mixtures increased, principally for the fly ash of a lower particle size and 35% of addition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号