首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4133篇
  免费   290篇
  国内免费   4篇
电工技术   76篇
综合类   19篇
化学工业   1042篇
金属工艺   109篇
机械仪表   70篇
建筑科学   328篇
矿业工程   18篇
能源动力   102篇
轻工业   299篇
水利工程   28篇
石油天然气   2篇
无线电   344篇
一般工业技术   861篇
冶金工业   309篇
原子能技术   16篇
自动化技术   804篇
  2024年   6篇
  2023年   61篇
  2022年   134篇
  2021年   155篇
  2020年   120篇
  2019年   101篇
  2018年   135篇
  2017年   111篇
  2016年   163篇
  2015年   171篇
  2014年   194篇
  2013年   276篇
  2012年   264篇
  2011年   332篇
  2010年   281篇
  2009年   223篇
  2008年   228篇
  2007年   226篇
  2006年   168篇
  2005年   156篇
  2004年   108篇
  2003年   95篇
  2002年   88篇
  2001年   59篇
  2000年   51篇
  1999年   63篇
  1998年   70篇
  1997年   48篇
  1996年   59篇
  1995年   35篇
  1994年   25篇
  1993年   29篇
  1992年   19篇
  1991年   13篇
  1990年   13篇
  1989年   14篇
  1988年   8篇
  1986年   9篇
  1985年   11篇
  1984年   7篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   13篇
  1976年   10篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1970年   5篇
  1969年   5篇
排序方式: 共有4427条查询结果,搜索用时 15 毫秒
191.
6-Piperidino-3-azabicyclo[3.1.0]hexane-6-carboxamide diastereomers 1a and 2a represent conformationally rigid analogues of 3a which is a building block in some pharmaceutical compounds. A new access to these compounds 1a and 2a was found via the cleavage of bicyclic N,N-acetal 6 with hydrocyanic acid as the stereodetermining step. Reaction of derivatives 1a and 2a with bromodiphenyl-butyronitrile 14 gave cyclopiritramide isomers 1c and 2c , respectively. Qualitative preliminary investigations showed different affinities of 1c and 2c to the opiate-μ receptor. These results were discussed on the basis of an X-ray structural analysis of cyclopiritramide isomer 2c . 1-Benzylcyclopiperidine derivatives 1d and 2d were used as model systems for studying the conformation of cyclopiritramide isomer 1c and 2c , respectively.  相似文献   
192.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.  相似文献   
193.
Oncostatin M (OSM), a member of the interleukin-6 family, functions as a major mediator of cardiomyocyte remodeling under pathological conditions. Its involvement in a variety of human cardiac diseases such as aortic stenosis, myocardial infarction, myocarditis, cardiac sarcoidosis, and various cardiomyopathies make the OSM receptor (OSMR) signaling cascades a promising therapeutic target. However, the development of pharmacological treatment strategies is highly challenging for many reasons. In mouse models of heart disease, OSM elicits opposing effects via activation of the type II receptor complex (OSMR/gp130). Short-term activation of OSMR/gp130 protects the heart after acute injury, whereas chronic activation promotes the development of heart failure. Furthermore, OSM has the ability to integrate signals from unrelated receptors that enhance fetal remodeling (dedifferentiation) of adult cardiomyocytes. Because OSM strongly stimulates the production and secretion of extracellular proteins, it is likely to exert systemic effects, which in turn, could influence cardiac remodeling. Compared with the mouse, the complexity of OSM signaling is even greater in humans because this cytokine also activates the type I leukemia inhibitory factor receptor complex (LIFR/gp130). In this article, we provide an overview of OSM-induced cardiomyocyte remodeling and discuss the consequences of OSMR/gp130 and LIFR/gp130 activation under acute and chronic conditions.  相似文献   
194.
In this article, we study shale gas pad development under natural gas price uncertainty. We optimize the sequence of operations, gas curtailment, and storage on a single pad to maximize the net present value. The optimization problem is formulated as an mixed-integer linear programming model, which is similar to the one proposed by Ondeck et al. We investigate how natural gas price uncertainty affects the operation strategy in the pad development. Both two-stage and multistage stochastic programming are used as the mathematical framework to hedge against uncertainty. Our case study shows that there is value of using stochastic programming when the price variance is high. However, when the variance of the price is low, solving the stochastic programming problems does not create additional value compared with solving the deterministic problem.  相似文献   
195.
196.
A subpopulation of neurons is less vulnerable against iron-induced oxidative stress and neurodegeneration. A key feature of these neurons is a special extracellular matrix composition that forms a perineuronal net (PN). The PN has a high affinity to iron, which suggests an adapted iron sequestration and metabolism of the ensheathed neurons. Highly active, fast-firing neurons—which are often ensheathed by a PN—have a particular high metabolic demand, and therefore may have a higher need in iron. We hypothesize that PN-ensheathed neurons have a higher intracellular iron concentration and increased levels of iron proteins. Thus, analyses of cellular and regional iron and the iron proteins transferrin (Tf), Tf receptor 1 (TfR), ferritin H/L (FtH/FtL), metal transport protein 1 (MTP1 aka ferroportin), and divalent metal transporter 1 (DMT1) were performed on Wistar rats in the parietal cortex (PC), subiculum (SUB), red nucleus (RN), and substantia nigra (SNpr/SNpc). Neurons with a PN (PN+) have higher iron concentrations than neurons without a PN: PC 0.69 mM vs. 0.51 mM, SUB 0.84 mM vs. 0.69 mM, SN 0.71 mM vs. 0.63 mM (SNpr)/0.45 mM (SNpc). Intracellular Tf, TfR and MTP1 contents of PN+ neurons were consistently increased. The iron concentration of the PN itself is not increased. We also determined the percentage of PN+ neurons: PC 4%, SUB 5%, SNpr 45%, RN 86%. We conclude that PN+ neurons constitute a subpopulation of resilient pacemaker neurons characterized by a bustling iron metabolism and outstanding iron handling capabilities. These properties could contribute to the low vulnerability of PN+ neurons against iron-induced oxidative stress and degeneration.  相似文献   
197.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer that predominantly arises in chronically sun-damaged skin. Immunosuppression, genetic disorders such as xeroderma pigmentosum (XP), exposure to certain drugs and environmental noxae have been identified as major risk factors. Surgical removal of cSCC is the therapy of choice and mostly curative in early stages. However, a minority of patients develop locally advanced tumors or distant metastases that are still challenging to treat. Immune checkpoint blockade (ICB) targeting CTLA-4, PD-L1 and PD-1 has tremendously changed the field of oncological therapy and especially the treatment of skin cancers as tumors with a high mutational burden. In this review, we focus on the differences between cSCC and cutaneous melanoma (CM) and their implications on therapy, summarize the current evidence on ICB for the treatment of advanced cSCC and discuss the chances and pitfalls of this therapy option for this cancer entity. Furthermore, we focus on special subgroups of interest such as organ transplant recipients, patients with hematologic malignancies, XP and field cancerization.  相似文献   
198.
Enzyme promiscuity has important implications in the field of biocatalysis. In some cases, structural analogues of simple metabolic building blocks can be processed through entire pathways to give natural product derivatives that are not readily accessible by chemical means. In this study, we explored the plasticity of the aurachin biosynthesis pathway with regard to using fluoro- and chloroanthranilic acids, which are not abundant in the bacterial producers of these quinolone antibiotics. The incorporation rates of the tested precursor molecules disclosed a regiopreference for halogen substitution as well as steric limitations of enzymatic substrate tolerance. Three previously undescribed fluorinated aurachin derivatives were produced in preparative amounts by fermentation and structurally characterized. Furthermore, their antibacterial activities were evaluated in comparison to their natural congener aurachin D.  相似文献   
199.
The three GxxxG repeating motifs from the C-terminal region of β-amyloid (Aβ) peptide play a significant role in regulating the aggregation kinetics of the peptide. Mutation of these glycine residues to leucine greatly accelerates the fibrillation process but generates a varied toxicity profile. Using an array of biophysical techniques, we demonstrated the uniqueness of the composite glycine residues in these structural repeats. We used solvent relaxation NMR spectroscopy to investigate the role played by the surrounding water molecules in determining the corresponding aggregation pathway. Notably, the conformational changes induced by Gly33 and Gly37 mutations result in significantly decreased toxicity in a neuronal cell line. Our results indicate that G33xxxG37 is the primary motif responsible for Aβ neurotoxicity, hence providing a direct structure–function correlation. Targeting this motif, therefore, can be a promising strategy to prevent neuronal cell death associated with Alzheimer's and other related diseases, such as type II diabetes and Parkinson's.  相似文献   
200.
The serine/threonine kinase CK2 modulates the activity of more than 300 proteins and thus plays a crucial role in various physiological and pathophysiological processes including neurodegenerative disorders of the central nervous system and cancer. The enzymatic activity of CK2 is controlled by the equilibrium between the heterotetrameric holoenzyme CK2α2β2 and its monomeric subunits CK2α and CK2β. A series of analogues of W16 ((3aR,4S,10S,10aS)-4-{[(S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]carbonyl}-10-(3,4,5-trimethoxyphenyl)-4,5,10,10a-tetrahydrofuro[3,4-b]carbazole-1,3(3aH)-dione ((+)- 3 a )) was prepared in an one-pot, three-component Levy reaction. The stereochemistry of the tetracyclic compounds was analyzed. Additionally, the chemically labile anhydride structure of the furocarbazoles 3 was replaced by a more stable imide ( 9 ) and N-methylimide ( 10 ) substructure. The enantiomer (−)- 3 a (Ki=4.9 μM) of the lead compound (+)- 3 a (Ki=31 μM) showed a more than sixfold increased inhibition of the CK2α/CK2β interaction (protein-protein interaction inhibition, PPII) in a microscale thermophoresis (MST) assay. However, (−)- 3 a did not show an increased enzyme inhibition of the CK2α2β2 holoenzyme, the CK2α subunit or the mutated CK2α′ C336S subunit in the capillary electrophoresis assay. In the pyrrolocarbazole series, the imide (−)- 9 a (Ki=3.6 μM) and the N-methylimide (+)- 10 a (Ki=2.8 μM) represent the most promising inhibitors of the CK2α/CK2β interaction. However, neither compound could inhibit enzymatic activity. Unexpectedly, the racemic tetracyclic pyrrolocarbazole (±)- 12 , with a carboxy moiety in the 4-position, displays the highest CK2α/CK2β interaction inhibition (Ki=1.8 μM) of this series of compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号