首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1381篇
  免费   108篇
  国内免费   5篇
电工技术   14篇
化学工业   455篇
金属工艺   30篇
机械仪表   56篇
建筑科学   36篇
能源动力   79篇
轻工业   207篇
水利工程   27篇
石油天然气   16篇
无线电   109篇
一般工业技术   201篇
冶金工业   41篇
原子能技术   11篇
自动化技术   212篇
  2024年   6篇
  2023年   31篇
  2022年   68篇
  2021年   133篇
  2020年   109篇
  2019年   101篇
  2018年   130篇
  2017年   123篇
  2016年   96篇
  2015年   58篇
  2014年   109篇
  2013年   124篇
  2012年   92篇
  2011年   68篇
  2010年   55篇
  2009年   43篇
  2008年   29篇
  2007年   18篇
  2006年   9篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   11篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1494条查询结果,搜索用时 15 毫秒
31.
Thermally stable thermoplastic elastomer nanocomposites based on polyamide 6 (PA6), acrylonitrile butadiene rubber (NBR), and halloysite nanotubes (HNTs) were dynamically vulcanized, and their nonisothermal decomposition kinetics were examined. The Friedman, Kissinger–Akahira–Sunose (KAS), Ozawa–Wall–Flynn (FWO), and modified Coats–Redfern (m-CR) isoconversional models were used to obtain information about the kinetics of the thermal decomposition of PA6–NBR–HNTs in terms of the activation energy per partial mass loss monitored through thermogravimetric analyses performed at different heating rates. An erratic trend was due to the Friedman model, especially for systems having higher HNT loadings, whereas the KAS, FWO, and m-CR models revealed very similar meaningful thermal decomposition kinetics. A relatively high activation energy corroborating a reliable thermal stability was obtained by the addition of HNTs to PA6–NBR, and the resistance against decomposition was higher for systems containing more HNT. This signified the role of the HNTs as thermal stability modifiers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47483.  相似文献   
32.
The influences of barium precursor and promoter type on the catalytic performance of perovskite catalysts in OCM reaction were studied. Catalysts (BaTiPO3, P: promoter) were prepared by carbonate, hydroxide and propionate precursors of barium and SnCl2 and CeO2 as promoters by sol-gel method, tested in a fixed-bed microreactor and characterized by XRD, BET, CO2-TPD, FT-IR and UV-Visible analysis. The experiment results showed that based on the extent of effect upon catalyst efficiency, the barium anions can be ranked as; propionate > carbonate > hydroxide, and the CeO2 promoted catalysts were more active than the SnCl2 promoted ones. The characterization results showed that the substitution of metal precursors caused formation of different phases with different particle sizes, influenced the basicity of the catalysts, resulted in the appearance of the peaks corresponding to different groups in IR spectroscopy, and shifted the absorption peaks in UV-Visible spectra. These results suggested that OCM reaction over perovskite catalysts is structure sensitive and depended on the type of used precursor and promoter.  相似文献   
33.
During the last decade, biodegradable metallic stents have been developed and investigated as alternatives for the currently-used permanent cardiovascular stents. Degradable metallic materials could potentially replace corrosion-resistant metals currently used for stent application as it has been shown that the role of stenting is temporary and limited to a period of 6-12 months after implantation during which arterial remodeling and healing occur. Although corrosion is generally considered as a failure in metallurgy, the corrodibility of certain metals can be an advantage for their application as degradable implants. The candidate materials for such application should have mechanical properties ideally close to those of 316L stainless steel which is the gold standard material for stent application in order to provide mechanical support to diseased arteries. Non-toxicity of the metal itself and its degradation products is another requirement as the material is absorbed by blood and cells. Based on the mentioned requirements, iron-based and magnesium-based alloys have been the investigated candidates for biodegradable stents. This article reviews the recent developments in the design and evaluation of metallic materials for biodegradable stents. It also introduces the new metallurgical processes which could be applied for the production of metallic biodegradable stents and their effect on the properties of the produced metals.  相似文献   
34.
A novel ion-selective poly(vinyl chloride) (PVC) membrane sensor for Cu2+ ions based on N,N′-(2,2-dimethylpropane-1,3-diyl)-bis(dihydroxyacetophenone) (NDHA) as a new ionophore was prepared and studied. The best performance was observed for the membrane composition, including 30:65:1:4 (wt%) = PVC:DBP:KTpClPB:NDHA. The electrode showed a good Nernstian slope of 30.0 ± 0.5 mV/decade in a wide linear range activity of 3.0 × 10−7 to 1.0 × 10−2 mol dm−3 Cu(NO3)2 with limit of detection 2.5 × 10−7. Sensor exhibited a fast response time (t95% < 10 s) and could be used for about 4 months in the pH range of 3.0–7.4. The proposed potentiometric sensor was found to work satisfactorily in partially non-aqueous media up to 30 (vol%) content of methanol, ethanol and acetone. Applications of this electrode for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, were reported. In order to predict the extraction ability of NDHA for different metallic ions, the complexes [M(NDHA)] and [M(H2O)6] (where M = Cu2+, Co2+, Hg2+, Pb2+, Ag+, Mg2+, Ca2+, Mn2+, Zn2+, Cd2+, K+ and Al3+) were investigated using ab initio theoretical calculations. The metal binding capability was evaluated using the binding energy. Results of our study could be useful for prediction of the extraction power of this Schiff base and could play a guiding role in planning experiments.  相似文献   
35.
In the present work, a novel solid phase microextraction (SPME) technique using a hollow fiber-supported sol–gel combined with multi-walled carbon nanotubes, coupled with differential pulse anodic stripping voltammetry (DPASV) was employed in the simultaneous extraction and determination of lead, cadmium and copper in rice. In this technique, an innovative solid sorbent containing mixture of carbon nanotube and a composite microporous compound was developed by the sol–gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). The growth process was initiated in basic condition (pH 10–11). Afterward this sol was injected into a polypropylene hollow fiber segment for in situ gelation process. The main factors influencing the pre-concentration and extraction of the metal ions; pH of the aqueous feed solution, extraction time, aqueous feed volume, agitation speed, the role of carbon nanotube reinforcement (as-grown and functionalized MWCNT) and salting effect have been examined in detail. Under the optimized conditions, linear calibration curves were established for the concentration of Cd(II), Pb(II) and Cu(II) in the range of 0.05–500, 0.05–500 and 0.01–100 ng mL−1, respectively. Detection limits obtained in this way are, 0.01, 0.025 and 0.0073 ng mL−1 for Cd(II), Pb(II) and Cu(II), respectively. The relative standard deviations (RSDs) were found to be less than 5% (n = 5, conc.: 1.0 ng mL−1).  相似文献   
36.
Hydroxyapatite (HA, Ca5(PO4)3OH) has been extensively used for bone implantation due to its similarity to the mineral component of bone, which makes it strongly osteoconductive. However, HA has low resorbability, and it is difficult to replace by a newly regenerated bone. Si doping can enhance the resorbability of HA by modifying its crystal structure. Here, we developed a simple thermal technique for preparing Si-doped HA from silica (SiO2) and HA precursors, both of which are inexpensive and commercially available. This method included the physical binding of SiO2 and HA particles, followed by pressing and sintering the mixture at an elevated temperature, which enhanced the atomic diffusion of Si into HA unit cells. We also evaluated the simulated body fluid (SBF) activity of the Si-doped HA prepared by this technique and showed that it significantly had higher resorbability and mineralizing potential compared to the pure HA. Our experimental design including, the individual precipitation and resorption assays enabled us to explain the mechanism behind the improved activity of Si-doped HA in SBF. This was attributed to the formation of new phases, such as β-tricalcium phosphate (β-TCP) and calcium silicate (Ca2SiO4) with higher solubility than HA on the SiO2-contating HA during the sintering stage. This can provide some guidelines for designing new calcium phosphate-based materials for hard tissue engineering applications.  相似文献   
37.
Chemical vapor deposition of poly(3‐methylthiophene) and poly (3‐hexylthiophene) as conductive polymers on the surface of polyester fabrics was successfully obtained. Fourier transform infrared spectroscopy confirmed the formation of polymers on surface of fabrics (the fingerprint of polythiophenes, υ 600–1500 cm?1). The uniformity of deposition and nanoparticles (average size of 60 nm) were proved with scanning electron microscopy. Electrochemical impedance spectroscopy showed that P3HT‐coated samples offer higher conductivity in compared to P3MT‐coated samples. The impedance modulus of P3HT‐coated samples was lowered nine times to that of row materials and reached to c8000 Ω. The samples have also shown electrochromic properties under electrical current, changing its color from yellowish green at 0 V to dark green at +12 V for poly (3‐hexylthiophene) samples and from brown at 0 V to red at +12 V for poly(3‐methylthiophene)‐coated fabrics (V = 0 V, λ = 450 nm; V = 12 V, λ = 650 nm). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40673.  相似文献   
38.
Schiff base complex of copper-functionalized MCM-41 (Cu-complex@MCM-41) was synthesized and used as an efficient and novel heterogeneous catalyst for the oxidative coupling of thiols into corresponding disulfides and oxidation of sulfides to sulfoxides using hydrogen peroxide (H2O2) as the oxidant. An aliphatic and aromatic series of sulfides and thiols including various functional groups were successfully converted into corresponding products. The all products were obtained in good to excellent yields. The mesoporous catalyst is characterized by FT-IR spectroscopy, BET, XRD, SEM, EDS and TGA. Recovery of the catalyst is easily achieved by simple filtration and reused for several consecutive runs without significant loss of its catalytic efficiency.  相似文献   
39.
ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.  相似文献   
40.
Data from comprehensive thermomechanical tests of poly(L-lactide-co-ε-caprolactone) biodegradable shape memory polymer (SMP) reinforced with pristine and functionalized multiwalled carbon nanotubes (MWCNTs) are reported. The SMP specimens tested up to 500% strain and between 25 °C and 70 °C temperatures. The incorporation of functionalized MWCNTs leads to the best overall reinforcing effect in tensile modulus, yield stress, tensile strength and elongation at failure. Thermo mechanical experiments resulted that the functionalized MWCNTs increased the glass transition range of composites and changed the melting point of composites slightly. The crystallinity of composites was increased with increment of MWCNTs in composites. The shape fixity and shape recovery of composites increased slightly, while the recovery stress increased 46%. It is found that the functionalized MWCNTs prepare an effective physical cross linking and switching segments in polymer composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号