首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   96篇
  国内免费   4篇
电工技术   8篇
化学工业   427篇
金属工艺   26篇
机械仪表   34篇
建筑科学   33篇
能源动力   73篇
轻工业   188篇
水利工程   28篇
石油天然气   12篇
无线电   87篇
一般工业技术   165篇
冶金工业   21篇
原子能技术   5篇
自动化技术   176篇
  2024年   5篇
  2023年   26篇
  2022年   62篇
  2021年   117篇
  2020年   108篇
  2019年   91篇
  2018年   117篇
  2017年   112篇
  2016年   91篇
  2015年   46篇
  2014年   95篇
  2013年   113篇
  2012年   82篇
  2011年   64篇
  2010年   49篇
  2009年   30篇
  2008年   23篇
  2007年   14篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有1283条查询结果,搜索用时 0 毫秒
81.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
82.
The three-component reaction between amine, carbonyl compound and thioglycolic acid is now considered as a major strategy for synthesis of 1,3-thiazolidin-4-ones, which consists of the following steps: (i) condensation of aldehyde and amine which results the formation of an imine; (ii) the reaction between thioglycolic acid and the imine which is followed by an intramolecular cyclization reaction, which leads to the formation of the final product. In this way, if no suitable catalyst is employed, the completion of the reaction will not be achieved. Hence, it is of great importance to select an appropriate catalyst so that these compounds can be successfully synthesized. Herein, we employed LDHs@PpPDA as a versatile catalyst for the fabrication of novel derivatives of 1,3-thiazolidin-4-one.  相似文献   
83.
Inflammatory bowel diseases (IBDs) are immune-mediated, chronic relapsing diseases with a rising prevalence worldwide in both adult and pediatric populations. Treatment options for immune-mediated diseases, including IBDs, are traditional steroids, immunomodulators, and biologics, none of which are capable of inducing long-lasting remission in all patients. Dendritic cells (DCs) play a fundamental role in inducing tolerance and regulating T cells and their tolerogenic functions. Hence, modulation of intestinal mucosal immunity by DCs could provide a novel, additional tool for the treatment of IBD. Recent evidence indicates that probiotic bacteria might impact immunomodulation both in vitro and in vivo by regulating DCs’ maturation and producing tolerogenic DCs (tolDCs) which, in turn, might dampen inflammation. In this review, we will discuss this evidence and the mechanisms of action of probiotics and their metabolites in inducing tolDCs in IBDs and some conditions associated with them.  相似文献   
84.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
85.
Nowadays, self-healing coatings display high abrasion resistance and bond strength. Application of these coatings are reckoned the most common and the most economic method for restoration and protection against corrosion by which metal structures durability is enhanced. The major role of a self-healing hybrid coating in corrosion inhibition is to supply materials for controlling types of corrosion. In this paper, titania–Benzotriazole nanostructured coating has been applied to substrate Al 7075 by using the sol–gel process and immersion method. The bonds existing in the hybrid coating, structure and morphology and coating corrosion behavior have been studied using Fourier transform infrared spectroscopy (FTIR), GIXRD, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and impedance electrochemical test, respectively. The obtained results are indicative of generating a homogeneous, uniform, crack-free titania–Benzotriazole nanostructured coating associated with excellent optimization of corrosion resistance at 2.8% Benzotriazole.  相似文献   
86.
Diffusion annealing of palladium-coated Ti-Ni plates was performed at temperatures ranging from 900 °C to 1,000 °C, to accomplish a compositional gradient in Ti-rich, Ti-Ni shape memory alloys. The aim of this study was to increase the transformation temperatures and transformation temperature intervals. Palladium diffusion profiles were measured by energy dispersive spectroscopy, and the corresponding approximate diffusion coefficients of the annealed specimens were calculated. The Gaussian solution of Fick’s second law for the one-dimensional lattice diffusion of a tracer was used. The transformation behavior studies were performed by differential scanning calorimetry. It was depicted that annealed specimens show longer transformation intervals compared to the bare alloy. In addition, annealed specimens showed improved shape memory properties that were attributed to the lower amount of Ti2Ni precipitates in the diffusion layer. The shape memory behaviour of the samples was detected using micro-indentation at room temperature, followed by heating them above the austenite formation temperature to calculate the shape recovery ratio.  相似文献   
87.
Processing of novel sintered steels with compositions including oxygen-sensitive elements requires deep understanding of the chemistry of sintering. The use of H2 atmospheres alleviates the oxygen transference from the base powder to the oxygen-sensitive particles. However, in H2, methane formation at 700–1200°C causes dramatic homogeneous decarburization of the part that affects both mechanical behavior and dimensional stability. The intensity and the critical temperatures of this effect depend strongly on the alloying elements, being significantly enhanced in presence of Si. When combining the alloying elements as Fe-Mn-Si masteralloys, methane formation is enhanced around 760°C due to the high Mn content (40 wt.%) in the masteralloys. Nevertheless, the benefits of H2 towards oxide reduction can still be advantageously used if diluting it in the form of N2-H2 atmospheres, or if limiting the use of H2 to temperatures below 500°C. Thus, decarburization due to methane formation can be successfully controlled.  相似文献   
88.
89.
Microwave energy is highly efficient for heating and processing different materials. In recent years, this type of heat transfer has been used in sintering process. Rapid and highly efficient heating, time and energy saving, and improved properties of sintered materials are advantages of microwave sintering. In this paper, Fe and Fe-Cu powder compact samples (cylindrical and bone shapes) are sintered both in microwave and electrical tube furnaces. The microwave generator has 2.45 GHz frequency and 1 KW power. Times are selected in the range of 5–25 min for microwave sintering and 5–40 min for electrical heating. The sintering temperature is set at 1120°C. Samples are sintered in the reducing atmosphere of 95% N2 + 5% H2 mixture. The density, hardness, and tensile strength of the samples are measured. The results are compared. The results show that the microwave-sintered materials have a finer microstructure. The microwave-sintered materials have 6–8% higher density, 5–10 HV5 higher hardness, and about 10% higher tensile strength than conventionally sintered materials.  相似文献   
90.
In this article, we propose a feature extraction method based on median–mean and feature line embedding (MMFLE) for the classification of hyperspectral images. In MMFLE, we maximize the class separability using discriminant analysis. Moreover, we remove the negative effect of outliers on the class mean using the median–mean line (MML) measurement and virtually enlarge the training set using the feature line (FL) distance metric. The experimental results on Indian Pines and University of Pavia data sets show the better performance of MMFLE compared to nearest feature line embedding (NFLE), median–mean line discriminant analysis (MMLDA), and some other feature extraction approaches in terms of classification accuracy using a small training set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号