首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1274篇
  免费   93篇
  国内免费   11篇
电工技术   40篇
综合类   3篇
化学工业   307篇
金属工艺   34篇
机械仪表   62篇
建筑科学   61篇
能源动力   112篇
轻工业   95篇
水利工程   8篇
石油天然气   15篇
无线电   112篇
一般工业技术   241篇
冶金工业   58篇
原子能技术   4篇
自动化技术   226篇
  2024年   3篇
  2023年   24篇
  2022年   36篇
  2021年   74篇
  2020年   62篇
  2019年   83篇
  2018年   101篇
  2017年   113篇
  2016年   88篇
  2015年   74篇
  2014年   90篇
  2013年   136篇
  2012年   80篇
  2011年   95篇
  2010年   66篇
  2009年   63篇
  2008年   41篇
  2007年   24篇
  2006年   20篇
  2005年   16篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
排序方式: 共有1378条查询结果,搜索用时 31 毫秒
71.
72.
In this paper, for the first time, synthesis of [Ba(H2O)8][Ni(dipic)2] complex and preparation of NiBaO2 nano-oxide are reported through thermal decomposition under surfactant free condition. This novel complex was characterized by Fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy, conductivity measurement and elemental analysis. Formation of novel nanoparticles was supported by FT-IR and energy-dispersive X-ray spectroscopy and the orthorhombic structure of nanocrystals was confirmed by powder X-ray diffraction analysis. In addition, size distribution as well as uniform morphology of prepared nano-oxide were recorded by dynamic light scattering analysis and field-emission scanning electron microscopy, respectively. Magnetic features measured by vibrating sample magnetometer, illustrate superparamagnetic behavior of the oxide.  相似文献   
73.
Adsorption of Pb(II) ion by a novel extractant-impregnated resin, EIR, was studied as a function of various experimental parameters using batch adsorption experiments. The new EIR was prepared by impregnating gallocyanine (GCN) onto Amberlite XAD-16 resin beads. The EIR was characterized by nitrogen analysis and SEM micrographs. The new EIR showed excellent selectivity factor values (α) for Pb(II) adsorption respect to other metal ions. The effects of some chemical and physical variables were evaluated and the optimum conditions were found for Pb(II) removal from aqueous solutions. The equilibrium adsorption isotherm was fitted with the Langmuir adsorption model. The maximum adsorption capacity (qmax) of EIR for Pb(II) ions was found to be 367.92 mg g−1. The kinetic studies showed that the intra-particle diffusion is the rate-controlling step. Also, the intra-particle diffusion coefficients, Dip values, were of the order of 10−12 m2 s−1. The values of enthalpy (ΔH°) were positive, which confirms the endothermic nature of adsorption process. Also, the positive entropy changes (ΔS°) were showed that the randomness increased along with the adsorption process. In addition, the obtained negative values of Gibbs free energy (ΔG°) indicated feasible and spontaneous nature of the adsorption process at different temperatures. The new adsorbent was very stable so that it can be successfully used for many consecutive cycles without significant loss in its adsorption capacity.  相似文献   
74.
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.  相似文献   
75.
In this study, combustion synthesis of cerium oxide nanoparticles was reported using cerium nitrate hexahydrate as starting material as well as urea, glycine, glucose, and citric acid as fuels. The influence of fuel type on structure, microstructure, band gap, and corrosion inhibition was investigated. X-ray diffraction (XRD) patterns and scanning electron microscopy micrographs showed that CeO2 nanoparticles with different morphologies were obtained depending on the fuel type. Microstructural changes from unreacted gel to sponge-like morphologies were resulted by varying the fuel type from urea, glycine, and glucose to citric acid. In addition to Ce–O bonds, Fourier transform infrared analysis showed carbon bonds of carbonaceous compositions from incomplete combustion which were declined during combustion reaction. Furthermore, corrosion analyses showed that samples synthesized using urea fuel released the most Ce+4 ions and could have better protection than other samples.  相似文献   
76.
The purpose of this paper is to study the characteristics of the combined convection heat transfer and a micropolar nanofluid flow passing through an impermeable stretching sheet in a porous medium. The nanofluid flow field is affected by a magnetic field perpendicular to the sheet. The dynamic viscosity of the micropolar nanofluid changes under the influence of the magnetic field. The continuity, linear momentum, angular momentum, and energy equations are first simplified using the order of magnitude technique that, along with the applied boundary conditions and the definition of the appropriate parameters, are transferred to the similarity space using the similarity analysis. Then the resulting equations are solved using the Runge–Kutta method.The distinction of the macroscale and microscale flow fields and temperature fields resulting from different nanoparticle shapes was clarified. Increasing the Hartmann number, the vortex viscosity parameter, the magnetic parameter, the nanoparticle volume fraction, and the permeability parameter of the porous media increased the surface friction on the sheet. Increasing the vortex viscosity parameter, the magnetic parameter, and the volume fraction of the nanoparticles increases the Nusselt number.  相似文献   
77.
In the present study a gas/liquid two-phase flow and the simultaneous evaporation and condensation phenomena in a thermosyphon was modeled. The volume of fluid (VOF) technique was used to model the interaction between these phases. Experiments in a thermosyphon were carried out at different operating conditions. The CFD predicted temperature profile in the thermosyphon was compared with experimental measurements and a good agreement was observed. It was concluded that CFD is a useful tool to model and explain the complex flow and heat transfer in a thermosyphon.  相似文献   
78.
This paper investigates the hydrodynamic behavior of gas–solid two-phase flow in the annular space of an air drilling well under different arrangements by using three-dimensional approach. Two-fluid model is used to solve the governing equations in the Eulerian–Eulerian framework. Effect of eccentricity and drill pipe rotation on the pressure drop, volume fraction and velocity profile are examined. The results are compared with available data in the literature and good agreement is found. The results show that the presence of solid particles in the annulus change the air velocity profile significantly and create two off-center peaks velocity close to the walls instead of one peak velocity in the middle. Eccentricity of drill pipe makes more accumulation of the cuttings in the smaller space of the annulus. Increasing the eccentricity increases pressure drop due to impact of particles with annulus wall and also particles collision with each other. Rotation of the drill pipe shifts maximum air velocity location toward smaller space of the annulus which results more uniform cutting distributions in the annulus and improvement in their transportations. Pressure drop in the annulus increases as eccentricity and rotation of drill pipe increase.  相似文献   
79.
In order to protect aluminum ground wires and phase conductors of overhead power lines against ice adhesion and excessive accretion, for ensuring safe and reliable power transmission during winter periods, a new coating with icephobic characteristics and satisfactory mechanical properties was developed. The method consisted in depositing an extremely adherent poly(tetrafluoroethylene) or PTFE coating on an Al2O3 underlayer produced by anodisation in either a phosphoric or an oxalic acid electrolyte. PTFE impregnation was carried out at low temperature (320 °C) and coating adhesion was assessed using tape and bend tests. These treatments resulted in highly hydrophobic surfaces with water contact angles lying between 130° and 140°. Ice shear stress was reduced by almost 2.5 times, and the PTFE coatings remained active after several ice shedding events. Morphologies and chemical compositions were studied using scanning electron microscopy, energy dispersive X-Ray analysis, as well as Fourier Transform Infra Red and X-Ray photoelectron spectroscopy.  相似文献   
80.
研究使用不同的中间层瞬时液相连接两种异种高温合金的适用性.在1100℃、不同时间下瞬时液相连接GTD-111/IN-718体系,研究BNi-2、BNi-3和BNi-9三种类型的中间层对该体系显微组织和力学性能的影响.采用场发射扫描电子显微镜和能量色散光谱技术,研究接头区域的成分变化和显微组织.结果表明,非热凝固区Ni3...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号