首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   51篇
  国内免费   1篇
电工技术   24篇
化学工业   145篇
金属工艺   22篇
机械仪表   14篇
建筑科学   21篇
能源动力   39篇
轻工业   66篇
水利工程   2篇
石油天然气   2篇
无线电   46篇
一般工业技术   135篇
冶金工业   31篇
原子能技术   10篇
自动化技术   124篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   36篇
  2020年   19篇
  2019年   12篇
  2018年   19篇
  2017年   21篇
  2016年   34篇
  2015年   23篇
  2014年   34篇
  2013年   47篇
  2012年   43篇
  2011年   41篇
  2010年   44篇
  2009年   59篇
  2008年   36篇
  2007年   38篇
  2006年   18篇
  2005年   29篇
  2004年   26篇
  2003年   18篇
  2002年   15篇
  2001年   5篇
  2000年   10篇
  1999年   2篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1989年   1篇
  1986年   1篇
  1982年   4篇
  1980年   1篇
  1977年   3篇
排序方式: 共有681条查询结果,搜索用时 31 毫秒
101.
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.  相似文献   
102.
Structural and Multidisciplinary Optimization - Hygro-thermo-chemical-mechanical models, used to determine the variations over time of temperature, relative humidity and shrinkage induced...  相似文献   
103.
One of the most impressive features of moving animal groups is their ability to perform sudden coherent changes in travel direction. While this collective decision can be a response to an external alarm cue, directional switching can also emerge from the intrinsic fluctuations in individual behaviour. However, the cause and the mechanism by which such collective changes of direction occur are not fully understood yet. Here, we present an experimental study of spontaneous collective turns in natural flocks of starlings. We employ a recently developed tracking algorithm to reconstruct three-dimensional trajectories of each individual bird in the flock for the whole duration of a turning event. Our approach enables us to analyse changes in the individual behaviour of every group member and reveal the emergent dynamics of turning. We show that spontaneous turns start from individuals located at the elongated tips of the flocks, and then propagate through the group. We find that birds on the tips deviate from the mean direction of motion much more frequently than other individuals, indicating that persistent localized fluctuations are the crucial ingredient for triggering a collective directional change. Finally, we quantitatively verify that birds follow equal-radius paths during turning, the effects of which are a change of the flock''s orientation and a redistribution of individual locations in the group.  相似文献   
104.
The advent of 2D nanostructured materials as advanced fillers for polymer matrix composites has opened the doors to a plethora of new industrial applications requiring both electric and thermal management. Unique properties, in fact, can arise from accurate selection and processing of 2D fillers and their matrix. Here, we report an innovative family of nanocomposite membranes based on polyurethane (PU) and graphene nanoplatelets (GNPs), designed to improve thermal comfort in functional textiles. GNP particles were thoroughly characterized (through Raman, atomic force microscopy, high-resolution TEM, scanning electron microscope), and showed high crystallinity (ID/IG = 0.127), low thickness (D50 < 6–8 layers), and high lateral dimensions (D50 ≈ 3 μm). When GNPs were loaded (up to 10% wt/wt) into the PU matrix, their homogeneous dispersion resulted in an increase of the in-plane thermal conductivity of composite membranes up to 471%. The thermal dissipation of membranes, alone or coupled with cotton fabric, was further evaluated by means of an ad hoc system designed to simulate a human forearm. The results obtained provide a new strategy for the preparation of membranes suitable for technical textiles, with improved thermal comfort.  相似文献   
105.
Benign prostatic hyperplasia (BPH) is an age-related chronic disorder, characterized by the hyperproliferation of prostatic epithelial and stromal cells, which drives prostate enlargement. Since BPH aetiology and progression have been associated with the persistence of an inflammatory stimulus, induced both by Nuclear Factor-kappa B (NF-κB) activation and reactive oxygen species (ROS) production, the inhibition of these pathways could result in a good tool for its clinical treatment. This study aimed to evaluate the antioxidant and anti-inflammatory activity of a combined formulation of Serenoa repens and Urtica dioica (SR/UD) in an in vitro human model of BPH. The results confirmed both the antioxidant and the anti-inflammatory effects of SR/UD. In fact, SR/UD simultaneously reduced ROS production, NF-κB translocation inside the nucleus, and, consequently, interleukin 6 (IL-6) and interleukin 8 (IL-8) production. Furthermore, the effect of SR/UD was also tested in a human androgen-independent prostate cell model, PC3. SR/UD did not show any significant antioxidant and anti-inflammatory effect, but was able to reduce NF-κB translocation. Taken together, these results suggested a promising role of SR/UD in BPH and BPH-linked disorder prevention.  相似文献   
106.
Flexible and semiflexible packagings can be manufactured by cast extrusion of plastic sheet and thermoforming of containers. Thermal stability is often required as packaging items after being thermoformed can come in contact with hot food/beverage, especially during hot filling operations. In this framework, the present study deals with the design and manufacturing by thermoforming of plastic containers that are, at the same time, compostable and suitable for high-temperature applications (~100 °C). First, extrusion compounding of Poly(l -lactic acid) (PLLA)-based biodegradable polyester blends was performed. In particular, the effect on the material properties of different types of nucleating agents was investigated. Combinations of micro-lamellar talc, poly(d -lactic acid) (PDLA), ethylene bisstearamide (EBS), and titanium dioxide (TiO2) were studied. The formulations involving EBS boast the highest crystallinity and the fastest onset of the crystalline phase on sheets produced by cast extrusion. Conversely, the formulations involving TiO2 feature the lowest degree of crystallinity and the slowest onset of the crystalline phase. Combinations of talc and PDLA exhibit an intermediate behavior. Second, thermoforming of the plastic foils was performed. A very different trend of the crystallization after thermoforming is shown. Indeed, crystallinity is the highest for the formulations involving talc and PDLA, the lowest for the ones containing EBS. In conclusion, the biodegradable polyester blends are found to be suitable for the manufacturing of compostable and thermostable packaging items by cast extrusion and thermoforming. Final crystallization of the material and the resulting thermal stability can be fine-tuned by modulating type and amount of nucleating agents. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48722.  相似文献   
107.
108.
Infectious diseases are caused by pathogenic microorganisms and are often severe. Time to fully characterize an infectious agent after sampling and to find the right antibiotic and dose are important factors in the overall success of a patient's treatment. Previous results suggest that a nanomotion detection method could be a convenient tool for reducing antibiotic sensitivity characterization time to several hours. Here, the application of the method for slow‐growing bacteria is demonstrated, taking Bordetella pertussis strains as a model. A low‐cost nanomotion device is able to characterize B. pertussis sensitivity against specific antibiotics within several hours, instead of days, as it is still the case with conventional growth‐based techniques. It can discriminate between resistant and susceptible B. pertussis strains, based on the changes of the sensor's signal before and after the antibiotic addition. Furthermore, minimum inhibitory and bactericidal concentrations of clinically applied antibiotics are compared using both techniques and the suggested similarity is discussed.  相似文献   
109.
This work deals with the effect of build orientation and of allowance for machining on DMLS‐produced Maraging Steel MS1. The experimental results, arranged by tools of Design of Experiment, have been statistically processed and compared. The outcomes were that, probably due to effect of the thermal treatment, machining, and material properties, the aforementioned factors do not have a significant impact on the fatigue response. This made it possible to work out a global curve that accounts for all the results, consisting in a high amount of data points. This can be regarded as one of the most complete and reliable fatigue models in the current literature. Fractographic and micrographic studies have been performed as well, to individuate the crack initiation points, usually located at subsurface porosities, and to investigate the location of internal inclusions and the actual martensitic microstructure along the stacking direction and on the build plane.  相似文献   
110.
This paper presents a novel class of preconditioners for the iterative solution of the sequence of symmetric positive‐definite linear systems arising from the numerical discretization of transient parabolic and self‐adjoint partial differential equations. The preconditioners are obtained by nesting appropriate projections of reduced‐order models into the classical iteration of the preconditioned conjugate gradient (PCG). The main idea is to employ the reduced‐order solver to project the residual associated with the conjugate gradient iterations onto the space spanned by the reduced bases. This approach is particularly appealing for transient systems where the full‐model solution has to be computed at each time step. In these cases, the natural reduced space is the one generated by full‐model solutions at previous time steps. When increasing the size of the projection space, the proposed methodology highly reduces the system conditioning number and the number of PCG iterations at every time step. The cost of the application of the preconditioner linearly increases with the size of the projection basis, and a trade‐off must be found to effectively reduce the PCG computational cost. The quality and efficiency of the proposed approach is finally tested in the solution of groundwater flow models. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号