首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5130篇
  免费   359篇
  国内免费   19篇
电工技术   39篇
综合类   2篇
化学工业   1064篇
金属工艺   97篇
机械仪表   116篇
建筑科学   249篇
矿业工程   10篇
能源动力   160篇
轻工业   409篇
水利工程   68篇
石油天然气   17篇
无线电   407篇
一般工业技术   1252篇
冶金工业   721篇
原子能技术   9篇
自动化技术   888篇
  2024年   9篇
  2023年   58篇
  2022年   97篇
  2021年   171篇
  2020年   144篇
  2019年   147篇
  2018年   170篇
  2017年   160篇
  2016年   199篇
  2015年   156篇
  2014年   252篇
  2013年   336篇
  2012年   396篇
  2011年   490篇
  2010年   310篇
  2009年   260篇
  2008年   343篇
  2007年   301篇
  2006年   255篇
  2005年   209篇
  2004年   165篇
  2003年   133篇
  2002年   144篇
  2001年   87篇
  2000年   64篇
  1999年   42篇
  1998年   46篇
  1997年   42篇
  1996年   39篇
  1995年   27篇
  1994年   35篇
  1993年   29篇
  1992年   22篇
  1991年   14篇
  1990年   14篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   11篇
  1985年   15篇
  1984年   8篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   13篇
  1975年   4篇
  1973年   3篇
排序方式: 共有5508条查询结果,搜索用时 15 毫秒
61.
Several protocols have been proposed to mitigate the threat against wireless sensor networks due to an attacker finding vulnerable nodes, compromising them, and using these nodes to eavesdrop or undermine the operation of the network. A more dangerous threat that has received less attention, however, is that of replica node attacks, in which the attacker compromises a node, extracts its keying materials, and produces a large number of replicas to be spread throughout the network. Such attack enables the attacker to leverage the compromise of a single node to create widespread effects on the network. To defend against these attacks, we propose distributed detection schemes to identify and revoke replicas. Our schemes are based on the assumption that nodes are deployed in groups, which is realistic for many deployment scenarios. By taking advantage of group deployment knowledge, the proposed schemes perform replica detection in a distributed, efficient, and secure manner. Through analysis and simulation experiments, we show that our schemes achieve effective and robust replica detection capability with substantially lower communication, computational, and storage overheads than prior work in the literature.  相似文献   
62.
Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4?x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.  相似文献   
63.
The linear sampling method (LSM) offers a qualitative image reconstruction approach, which is known as a viable alternative for obstacle support identification to the well-studied filtered backprojection (FBP), which depends on a linearized forward scattering model. Of practical interest is the imaging of obstacles from sparse aperture far-field data under a fixed single frequency mode of operation. Under this scenario, the Tikhonov regularization typically applied to LSM produces poor images that fail to capture the obstacle boundary. In this paper, we employ an alternative regularization strategy based on constraining the sparsity of the solution's spatial gradient. Two regularization approaches based on the spatial gradient are developed. A numerical comparison to the FBP demonstrates that the new method's ability to account for aspect-dependent scattering permits more accurate reconstruction of concave obstacles, whereas a comparison to Tikhonov-regularized LSM demonstrates that the proposed approach significantly improves obstacle recovery with sparse-aperture data.  相似文献   
64.
The charge separation and transport dynamics in CdSe nanoparticle:poly(3‐hexylthiophene) (P3HT) blends are reported as a function of the shape of the CdSe‐nanoparticle electron acceptor (dot, rod, and tetrapod). For optimization of organic photovoltaic device performance it is crucial to understand the role of various nanostructures in the generation and transport of charge carriers. The sample processing conditions are carefully controlled to eliminate any processing‐related effects on the carrier generation and on device performance with the aim of keeping the conjugated polymer phase constant and only varying the shape of the inorganic nanoparticle acceptor phase. The electrodeless, flash photolysis time‐resolved microwave conductivity (FP‐TRMC) technique is used and the results are compared to the efficiency of photovoltaic devices that incorporate the same active layer. It is observed that in nanorods and tetrapods blended with P3HT, the high aspect ratios provide a pathway for the electrons to move away from the dissociation site even in the absence of an applied electric field, resulting in enhanced carrier lifetimes that correlate to increased efficiencies in devices. The processing conditions that yield optimum performance in high aspect ratio CdSe nanoparticles blended with P3HT result in poorly performing quantum dot CdSe:P3HT devices, indicating that the latter devices are inherently limited by the absence of the dimensionality that allows for efficient, prolonged charge separation at the polymer:CdSe interface.  相似文献   
65.
In this study, poly(dl ‐lactide‐co‐glycolide)/porous silicon (PLGA/pSi) composite microspheres, synthesized by a solid‐in‐oil‐in‐water (S/O/W) emulsion method, are developed for the long‐term controlled delivery of biomolecules for orthopedic tissue engineering applications. Confocal and fluorescent microscopy, together with material analysis, show that each composite microsphere contained multiple pSi particles embedded within the PLGA matrix. The release profiles of fluorescein isothiocyanate (FITC)‐labeled bovine serum albumin (FITC‐BSA), loaded inside the pSi within the PLGA matrix, indicate that both PLGA and pSi contribute to the control of the release rate of the payload. Protein stability studies show that PLGA/pSi composite can protect BSA from degradation during the long term release. We find that during the degradation of the composite material, the presence of the pSi particles neutralizes the acidic pH due to the PLGA degradation by‐products, thus minimizing the risk of inducing inflammatory responses in the exposed cells while stimulating the mineralization in osteogenic growth media. Confocal studies show that the cellular uptake of the composite microspheres is avoided, while the fluorescent payload is detectable intracellularly after 7 days of co‐incubation. In conclusion, the PLGA/pSi composite microspheres offer an additional level of controlled release and could be ideal candidates as drug delivery vehicles for orthopedic tissue engineering applications.  相似文献   
66.
Surface properties of electrode materials play a critical role in the function of batteries. Therefore, surface modifications, such as coatings, have been widely used to improve battery performance. Understanding how these coatings function to improve battery performance is crucial for both scientific research and applications. In this study the electrochemical performance of coated and uncoated LiNi0.5Mn1.5O4 (LNMO) electrodes is correlated with ensemble‐averaged soft X‐ray absorption spectroscopy (XAS) and spatially resolved scanning transmission electron microscopy‐electron energy loss spectroscopy (STEM‐EELS) to illustrate the mechanism of how ultrathin layer Al2O3 coatings improve the cycle life of LiNi0.5Mn1.5O4. Mn2+ evolution on the surface is clearly observed in the uncoated sample, which results from the reaction between the electrolytic solution and the surfaces of LiNi0.5Mn1.5O4 particles, and also possibly atomic structure reconstructions and oxygen loss from the surface region in LiNi0.5Mn1.5O4. The coating effectively suppresses Mn2+ evolution and improves the battery performance by decelerating the impedance buildup from the surface passivation. This study demonstrates the importance of combining ensemble‐averaged techniques (e.g., XAS) with localized techniques (e.g., STEM‐EELS), as the latter may yield unrepresentative information due to the limited number of studied particles, and sheds light on the design of future coating processes and materials.  相似文献   
67.
Halide perovskite materials have come to the forefront of optoelectronics recently owing to their excellent light absorbing and emitting properties. Despite their excellent properties there are still problems that need to be overcome such as short operating lifetimes, and an observed hysteresis behavior in their current–voltage characteristics. It is found that these challenges could be overcome by developing a deterministic nucleation process using gold as a nucleation promoter to control the grain size of the perovskite layer. It is shown that this deterministic nucleation process can be expanded across multiple perovskite systems and can be used to achieve extremely uniform and large grain sizes within the perovskite layer. These large perovskite grains exhibit enhanced stability compared to current state‐of‐the‐art nanocrystalline films, and exhibit no hysteresis in their IV characteristics which is key if commercialization of perovskites is to be realized.  相似文献   
68.
Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2-D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2-D shear wave speed map (40 × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally, a 2-D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound.  相似文献   
69.
70.
Personalization is a key aspect of biophysical models in order to impact clinical practice. In this paper, we propose a personalization method of electromechanical models of the heart from cine-MR images based on the adjoint method. After estimation of electrophysiological parameters, the cardiac motion is estimated based on a proactive electromechanical model. Then cardiac contractilities on two or three regions are estimated by minimizing the discrepancy between measured and simulation motion. Evaluation of the method on three patients with infarcted or dilated myocardium is provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号