首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3785篇
  免费   154篇
  国内免费   4篇
电工技术   50篇
综合类   28篇
化学工业   1043篇
金属工艺   93篇
机械仪表   76篇
建筑科学   306篇
矿业工程   8篇
能源动力   82篇
轻工业   213篇
水利工程   20篇
石油天然气   2篇
无线电   290篇
一般工业技术   765篇
冶金工业   186篇
原子能技术   36篇
自动化技术   745篇
  2024年   34篇
  2023年   80篇
  2022年   87篇
  2021年   163篇
  2020年   153篇
  2019年   169篇
  2018年   118篇
  2017年   124篇
  2016年   152篇
  2015年   121篇
  2014年   191篇
  2013年   233篇
  2012年   225篇
  2011年   302篇
  2010年   210篇
  2009年   183篇
  2008年   206篇
  2007年   185篇
  2006年   143篇
  2005年   122篇
  2004年   76篇
  2003年   65篇
  2002年   68篇
  2001年   32篇
  2000年   53篇
  1999年   49篇
  1998年   61篇
  1997年   39篇
  1996年   32篇
  1995年   32篇
  1994年   22篇
  1993年   31篇
  1992年   20篇
  1991年   20篇
  1990年   16篇
  1989年   15篇
  1988年   17篇
  1987年   10篇
  1986年   6篇
  1985年   12篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1966年   4篇
排序方式: 共有3943条查询结果,搜索用时 15 毫秒
991.
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue.  相似文献   
992.
We describe a method for multiplexed analysis of proteins using fluorescently encoded microbeads. The sensitivity of our method is comparable to the sensitivity obtained by enzyme-linked immunosorbent assay while only 5 µl sample volumes are needed. Streptavidin-coated, 1 µm beads are encoded with a combination of fluorophores at different intensity levels. As a proof of concept, we demonstrate that 27 microbead populations can be readily encoded by affinity conjugation using three intensity levels for each of three different biotinylated fluorescent dyes. Four populations of encoded microbeads are further conjugated with biotinylated capture antibodies and then combined and immobilized in a microfluidic flow cell for multiplexed protein analysis. Using four uniquely encoded microbead populations, we show that a cancer biomarker and three cytokine proteins can be analysed quantitatively in the picogram per millilitre range by fluorescence microscopy in a single assay. Our method will allow for the fabrication of high density, bead-based antibody arrays for multiplexed protein analysis using integrated microfluidic devices and automated sample processing.  相似文献   
993.
Design rules for phase-change materials in data storage applications   总被引:1,自引:0,他引:1  
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented.  相似文献   
994.
Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(?) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.  相似文献   
995.
In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following “Nature as model”. Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated “biosilica” formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.  相似文献   
996.
Homoepitaxial MgZnO thin films were grown from PLD targets with 1, 2, 4, and 10 wt.% MgO content on ZnO-buffered ZnO(001) substrates. The resulting Mg content of the films was determined from the blue-shift of the excitonic peak in low-temperature photoluminescence spectra. With increasing Mg content a considerable increase of film mosaicity was observed from HR-XRD (002) rocking curves. Triple-axis reciprocal space maps of symmetric (002) and asymmetric (104) reflections show the structural development in terms of tilt and perpendicular and parallel strain. For more than 1% Mg the films exhibit increasing tensile out-of-plane strain. Very high electron mobilities of 200 cm²/Vs at 300 K and 900 cm²/Vs at 65 K were measured in the homoepitaxial MgZnO/ZnO thin films with free electron concentrations around 1018 and 1017 cm− 3, respectively. The homoepitaxial ZnO template film deposited from a melt-grown ZnO single crystal as PLD target shows two orders of magnitude lower carrier concentration due to high compensation.  相似文献   
997.
Amorphous hydrogenated silicon-rich silicon carbide (a-Si0.8C0.2:H) thin films were prepared by plasma enhanced chemical vapour deposition and were thermally annealed in a conventional resistance heated furnace at annealing temperatures up to 1100 °C. The annealing temperatures were varied and the samples were characterised with Auger electron spectroscopy, glancing incidence X-ray diffraction, Raman spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscopy and photoluminescence (PL) spectroscopy. As-deposited a-Si0.8C0.2:H thin films contain a large amount of hydrogen and are amorphous. When annealing the films, the onset of Si crystallisation appears at 700 °C. For higher annealing temperatures, we observed SiC crystallites in addition to the Si nanocrystals (NCs). The crystallisation of SiC correlates with the occurrence of a strong PL band, which is strongly reduced after hydrogen passivation. Thus PL signal originates from the SiC matrix. Si NCs exhibit no PL yield due to their inhomogeneous size distribution.  相似文献   
998.
The experimental determination of stiffness and strength of textile composites is expensive and time-consuming. Experimental tests are only capable of delivering properties of a whole textile layer, because a decomposition is not possible. However, a textile layer, consisting of several fiber directions, has the drawback that it is likely to exhibit anisotropic material behavior. In the presented paper a finite element multiscale analysis is proposed that is able to predict material behavior of textile composites via virtual tests, solely from the (nonlinear) material behavior of epoxy resin and glass fibers, as well as the textile fiber architecture. With these virtual tests it is possible to make predictions for a single layer within a textile preform or for multiple textile layers at once. The nonlinear and pressure-dependent behavior of the materials covered in the multiscale analysis is modeled with novel material models developed for this purpose. In order to avoid mesh-dependent solutions in the finite-element simulations, regularization techniques are applied. The simulations are compared to experimental test results.  相似文献   
999.
No matter whether the search interest is in catalysts or catheters, albumins or zeolites, ICO (“In Computer Only”) index terms developed at the EPO since the mid 1980s can definitely be of help. The purpose of this paper is to get the interested search professional more acquainted with ICOs, and the logic behind them will be briefly explained. Examples from the field of homogeneous catalysis (B01J31) and batteries and fuel cells (H01M) will be presented in this context, as well as a selection of suitable commercial databases that include ICO codes.  相似文献   
1000.
We present a generic concept to create local concentration gradients, based on the absorption of gases or vapors in a liquid. A multilayer microfluidic device with crossing gas and liquid channels is fabricated by micromilling and used to generate multiple gas-liquid contacting regions, separated by a hydrophobic membrane. Each crossing can acts as both a microdosing and microstripping region. Furthermore, the liquid and gas flow rate can be controlled independently of each other. The focus of this conceptual article is on the generation of pH gradients, by locally supplying acidic or basic gases/vapors, such as carbon dioxide, hydrochloric acid, and ammonia, visualized by pH-sensitive dyes. Stationary and moving gradients are presented in devices with 500-microm channel width, depths of 200-400 microm, and lengths of multiple centimeters. It is shown that the method allows for multiple consecutive switching gradients in a single microchannel. Absorption measurements in a microcontactor with the model system CO2/water are presented to indicate the dependence of gas absorption rate on channel depth and residence time. Achievable concentration ranges are ultimately limited by the solubility of used components. The reported devices are easy to fabricate, and their application is not limited to pH gradients. Two proof of principles are demonstrated to indicate new opportunities: (i) local crystallization of NaCl using HCl vapor and (ii) consecutive reactions of ammonia with copper(II) ions in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号