首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   33篇
  国内免费   1篇
电工技术   20篇
综合类   1篇
化学工业   165篇
金属工艺   16篇
机械仪表   3篇
建筑科学   9篇
能源动力   10篇
轻工业   19篇
水利工程   1篇
石油天然气   1篇
无线电   87篇
一般工业技术   150篇
冶金工业   11篇
自动化技术   68篇
  2024年   2篇
  2023年   26篇
  2022年   40篇
  2021年   40篇
  2020年   34篇
  2019年   17篇
  2018年   29篇
  2017年   9篇
  2016年   13篇
  2015年   21篇
  2014年   19篇
  2013年   22篇
  2012年   40篇
  2011年   39篇
  2010年   32篇
  2009年   24篇
  2008年   20篇
  2007年   32篇
  2006年   26篇
  2005年   17篇
  2004年   18篇
  2003年   9篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1962年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
101.
We report a process to form large-area, few-monolayer graphene oxide films and then recover the outstanding mechanical properties found in graphene to fabricate high Young's modulus ( =185 GPa), low-density nanomechanical resonators. Wafer-scale films as thin as 4 nm are sufficiently robust that they can be delaminated intact and resuspended on a bed of pillars or field of holes. From these films, we demonstrate radio frequency resonators with quality factors (up to 4000) and figures of merit ( f x Q>10(11)) well exceeding those of pure graphene resonators reported to date. These films' ability to withstand high in-plane tension (up to 5 N/m) as well as their high Q-values reveals that film integrity is enhanced by platelet-platelet bonding unavailable in pure graphite.  相似文献   
102.
The quantification of a virus plays an important role in vaccine development, clinical diagnostics, and environmental contamination assays. In all these cases, it is essential to calculate the concentration or number of intact virus particles (ivp) and estimate the degree of degradation and contamination of virus samples. In this work, we propose a cost-efficient, robust method for the quantification and characterization of intact viruses based on capillary zone electrophoresis. This separation method is demonstrated on vaccinia virus (VV) with oncolytic properties. After virus sample preparation, the solution contains intact VV as well as broken viruses and residual DNA from the host cell used for preparation. Regulatory requirements limit the amount of the host cell DNA that can be present in vaccines or human therapeutics. We apply capillary electrophoresis to separate intact virus particles and the residual DNA and to measure the level of virus contamination with DNA impurities. Intercalating YOYO-1 dye is used to detect the encapsulated and free DNA by laser-induced fluorescence. After soft lysis of VV with proteinase K, all encapsulated DNA is dissolved to the free DNA. The change in peak areas and a DNA calibration curve help determine the initial concentration of intact viruses. This viral quantitative capillary electrophoresis (Viral qCE) is able to quantify the oncolytic vaccinia virus in the range of 10(6) to 10(12) ivp/mL.  相似文献   
103.
Volumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations. Since free-radical thiol-ene polymerization is not inhibited by oxygen, the nonlinear threshold response required in VAM is introduced by incorporating 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger. Tuning of the reaction kinetics is accomplished by balancing inhibitor and initiator content. Coupling this with quantitative measurements of the absorbed volumetric optical dose allows control of polymer conversion and gelation during printing. Importantly, this work thereby establishes the first comprehensive framework for spatial–temporal control over volumetric energy distribution, demonstrating structures 3D printed in thiol-ene resin by means of tomographic volumetric VAM. Mechanical characterization of this thiol-ene system, with varied ratios of isocyanurate and triethylene glycol monomers, reveals highly tunable mechanical response far more versatile than identical acrylate-based resins. This broadens the range of materials and properties available for VAM, taking another step toward high-performance printed polymers.  相似文献   
104.
105.
Abstract

The one-step method for graphene oxide (GO) simultaneous reduction and carboxylation via ultraviolet irradiation in the inert atmosphere has been reported. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) data revealed that the proposed approach allows to obtain reduced graphene oxide (rGO) films, containing up to 10 at.% of carboxyl groups. The carboxyl groups concentration can be tuned within the range of 3 to 10 at.% by controlling the oxidation degree of the irradiated GO via the preliminary low-temperature air heating. Furthermore, no carboxylation effect is observed in the case of irradiation of the completely reduced GO films. This coincides with our previous results, validating the proposed model of GO carboxylation based on photoinduced conversion of basal-plane hydroxyl groups and ketones into carboxyl ones. Despite a different degree of carboxylation, all the obtained samples demonstrate almost complete elimination of basal plane groups and restoration of the graphene flakes aromatic structure. This fact is emphasized by the sheet resistance measurements, demonstrating that the obtained C-xy graphene exhibits high electrical conductivity. As a net result, the material obtained by the presented method shows promising applications in the manufacturing of biosensor transducers owing to both its conductive nature and presence of carboxyl groups, playing the role of the anchoring points for biomolecules.  相似文献   
106.
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled.  相似文献   
107.
The n-type thermoelectric Bi1.9Lu0.1Te3 was prepared by microwave-solvothermal method and spark plasma sintering. The magnetic field and temperature dependences of transverse magnetoresistance measured within temperature 2–200 K interval allow finding the peculiarities characteristic for strongly disordered and inhomogeneous semiconductors. The first peculiarity is due to appearance of linear-in-magnetic field contribution to the total magnetoresistance reflected in a crossover from quadratic magnetoresistance at low magnetic fields to linear magnetoresistance at high magnetic fields. The linear magnetoresistance can result from the Hall resistance picked up from macroscopically distorted current paths due to local variations in stoichiometry of the compound studied. The second peculiarity is that both linear magnetoresistance magnitude and crossover field are functions of carrier mobility which is in agreement with the Parish and Littlewood model developed for disordered and inhomogeneous semiconductors. An increase in the mobility due to a decrease in temperature is accompanied by an increase in the magnetoresistance magnitude and a decrease in the crossover field. Finally, the third peculiarity is related to the remarkable deviation of the total magnetoresistance measured at various temperatures from the Kohler's rule. Presence of strong inhomogeneity and disorder in the Bi1.9Lu0.1Te3 structure concluded from the magnetoresistance peculiarities can be responsible for the remarkable reduction in the total thermal conductivity of this compound.  相似文献   
108.
Organic semiconductors that can be fabricated by simple processing techniques and possess excellent electrical performance, are key requirements in the progress of organic electronics. Both high semiconductor charge-carrier mobility, optimized through understanding and control of the semiconductor microstructure, and stability of the semiconductor to ambient electrochemical oxidative processes are required. We report on new semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices. Relatively large crystalline domain sizes on the length scale of lithographically accessible channel lengths ( approximately 200 nm) were exhibited in thin films, thus offering the potential for fabrication of single-crystal polymer transistors. Good transistor stability under static storage and operation in a low-humidity air environment was demonstrated, with charge-carrier field-effect mobilities of 0.2-0.6 cm(2) V(-1) s(-1) achieved under nitrogen.  相似文献   
109.
Results of a monitoring program carried out by members of the Refractory Ceramic Fibers Coalition as part of a Consent Agreement with the U.S. Environmental Protection Agency to measure workplace concentrations of refractory ceramic fiber (RCF) are presented. More than 700 personal monitoring samples were collected and analyzed annually from workers in RCF production and processing plants, as well as from those employed by customers/end users. The data indicate that (i) approximately 90% of time-weighted average (TWA) workplace concentrations are below the industry's recommended exposure guideline of 1 fiber per cubic centimeter TWA; (ii) workplace concentrations vary with functional job category; (iii) concentrations are approximately lognormally distributed; (iv) workplace concentrations are generally decreasing; (v) there are significant differences in workplace concentrations among plants operated by both RCF producers and customers; (vi) equations can be developed to interconvert data analyzed using different measurement techniques and counting rules; (vii) usage of respirators varies with the functional job category of the worker and the average fiber concentration; and (viii) workplace samples differ from those used in animal inhalation experiments in terms of the ratio of respirable particles to fibers.  相似文献   
110.
Iron-containing mesoporous mesophase materials Fe-MMM-2 have been synthesized by a sol–mesophase route under mild acidic conditions and characterized by DRS-UV–vis, XRD, and N2 adsorption measurements. It was found that pH of the synthesis solution and iron content in the samples affect both the textural characteristics and the state of iron atoms. Isolated iron species predominate in silica framework under Fe < 2 wt% and pH  1.0 or Fe  1 wt% and pH < 2.0. These species are stable to leaching and highly active in full H2O2-based phenol oxidation. The increase in iron loading and pH of the synthesis solution lead to the agglomeration and formation of oligomeric iron species, which, in turn, results in the reduction of the catalytic activity of Fe-MMM-2 and the increase of iron leaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号