首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   148篇
  国内免费   25篇
电工技术   46篇
综合类   7篇
化学工业   753篇
金属工艺   72篇
机械仪表   105篇
建筑科学   105篇
矿业工程   10篇
能源动力   160篇
轻工业   165篇
水利工程   46篇
石油天然气   22篇
无线电   247篇
一般工业技术   407篇
冶金工业   79篇
原子能技术   17篇
自动化技术   498篇
  2024年   4篇
  2023年   48篇
  2022年   76篇
  2021年   177篇
  2020年   126篇
  2019年   173篇
  2018年   213篇
  2017年   187篇
  2016年   170篇
  2015年   113篇
  2014年   203篇
  2013年   275篇
  2012年   177篇
  2011年   201篇
  2010年   151篇
  2009年   106篇
  2008年   73篇
  2007年   38篇
  2006年   39篇
  2005年   28篇
  2004年   20篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1998年   15篇
  1997年   3篇
  1996年   9篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2739条查询结果,搜索用时 0 毫秒
61.
In this work, TiO2 and ZnO were incorporated successfully into a MIL-53(Al) metal–organic framework (MOF) to form nanocomposites via a facile post-modification technique. The hybrid MIL-53(Al)@TiO2 and MIL-53(Al)@ZnO were characterized by several characterization tests. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and field-emission scanning electron microscopy (FE-SEM) analyses showed evidence of the successful incorporation of TiO2 and ZnO within the MIL-53(Al) framework. The thermal gravimetric analysis (TGA) analysis demonstrated the excellent thermal stability of MIL-53(Al)@TiO2 and MIL-53(Al)@ZnO, while diffuse reflectance spectroscopy (DRS) determined the direct optical band gaps of MIL-53(Al)@ZnO and MIL-53(Al)@TiO2 to be 3.24 and 3.34 eV, respectively. The composites were also tested for the photocatalytic degradation of diclofenac (DCF) as a micropollutant. The DCF degradation efficiency of the photocatalysts was ranked in the following order: MIL-53(Al)@TiO2 > MIL-53(Al) > TiO2 > ZnO > MIL-53(Al)@ZnO. The incorporation of TiO2 enhanced the optical properties of MIL-53 (Al), which was confirmed with the superior photodegradation efficiency of MIL-53(Al)@TiO2 (>85% in 2 h) as compared to the pristine MIL-53(Al) (around 80% in 2 h). The improvement in the photodegradation of the hybrid-MOF is mostly associated with the possible dual function of the adsorption and photodegradation mechanisms. The reusability of MIL-53(Al) and its composites was inspected over 3 cycles of photodegradation experiments with DCF. The photocatalytic activity of MIL-53(Al)@TiO2 remained unchanged (>90%), while for MIL-53(Al) and MIL-53(Al)@ZnO a slight drop was observed over three cyclic degradation experiments. Fluorescence measurements revealed that the hydroxyl radical is an important reactive oxygen species produced by all the photocatalysts that aid in the photodegradation of DCF. Furthermore, the kinetic modelling of the photoreaction identified a second-order kinetics for all catalysts. Experiments with scavengers showed that hydroxyl radicals played a major role in the photocatalytic process, and it was found that only 2 h of treatment was sufficient to obtain a considerable chemical oxygen demand (COD) reduction of 58%.  相似文献   
62.
This study aims to investigate polysulfone (PSF) mixed matrix membranes (MMMs) properties containing zirconium-based and titanium-based metal–organic frameworks (MOFs). for hemodialysis application. The nanoparticles were synthesized, and the membranes were produced by the phase inversion method. Membrane characterization conducted by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), field emission Scanning electron microscope (FE-SEM), energy-dispersive x-ray analysis (EDX), transmission electron microscopy (TEM), x-ray diffraction (XRD), and atomic force microscopy (AFM) confirmed the presence of MOF nanoparticles. Also, the evaluation of the specific surface area of nanoparticles was done by BET. The water contact angle reduced from 64.4° to 51.2°, indicating the hydrophilicity improvement, enhancing the pure water flux from 46.8 L/m2h for the pristine membrane to 76.7 L/m2h for the pristine membrane M4. The total fouling resistance decreased from 30% to 21%, and the bovine serum albumin (BSA) adsorption of modified membranes was lower than that of the pristine membrane. Urea and creatinine were cleared significantly for modified ones, up to 82.6% and 72.1%, respectively, and all membranes showed BSA retention of more than 93%. A comparison between MMMs that contained UIO-66-NH2 and MIL-125-NH2 showed that the former had a better effect on the performance. M4 had better results, indicating high water flux, the lowest fouling resistance, high porosity, lower BSA adsorption, proper clearance for urea and creatinine, and 94.2% BSA retention.  相似文献   
63.
A series of segmented poly(urethane‐urea) block copolymers were synthesized with varying proportions of polydimethylsiloxane diols in combination with polytetramethylene ether glycol (PTMG) using 4,4'‐methylenediphenyl diisocyanate followed by chain extension with a (50:50 mol %) mixture of 4,4'‐methylene‐bis(3‐chloro‐2,6‐diethylaniline) (M‐CDEA) and 1,4‐butanediol (BD). The molecular structures of polydimethylsiloxane urethane‐ureas were characterized by ATR‐FTIR and 1H‐NMR spectroscopic techniques. Distribution of siloxane domain and its influence on surface roughness were investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM), respectively. The mechanical and thermal properties of the elastomers were studied by thermogravimetric analysis, dynamical mechanical thermal analysis, and tensile measurement. The results showed that by incorporation of polydimethylsiloxane diol and M‐CDEA chain extender in polyurethane formulation, some improvements in thermal stability, fire resistance and surface hydrophilicity were achieved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1743–1751, 2013  相似文献   
64.
Nano-MgAl2O4 particles were successfully synthesized at 850 °C using the molten-salt method, and the effects of processing parameters, such as temperature, holding time and amount of salt on the crystallization of MgAl2O4 were investigated. Nano-alumina, magnesia and lithium chloride were used as starting materials. LiCl molten salt provided a liquid medium for reaction of Al2O3 and MgO to form MgAl2O4. The results demonstrated that MgAl2O4 started to form at about 650 °C and that, after the temperature was increased to 1000 °C, the amounts of MgAl2O4 in the resultant powders increased with a concomitant decrease in Al2O3 and MgO contents. After washing with hot-distilled water, the samples heated for 3 h at 850 °C were single-phase MgAl2O4 with 30–50 nm particle size. Furthermore, the synthesized MgAl2O4 particles retained the size and morphology of the Al2O3 powders, which indicated that a template formation mechanism dominated the formation of MgAl2O4 by molten-salt method.  相似文献   
65.

The statistical properties of charged particles and their wall deposition in a turbulent channel flow in the presence of an electrostatic field is studied in this paper. For a dilute concentration, the influence of small particles on the fluid motion is neglected. The instantaneous velocity field is generated by a direct numerical simulation of the Navier-Stokes equation via a pseudospectral method. The case in which each particle carries a single unit of charge and the case in which the particles have a saturation charge distribution are analyzed. Ensembles of 8192 particle trajectories are used for evaluating various statistics. Effects of size and electric field intensity on particle trajectory statistics and wall deposition rate are studied. RMS particle velocities and particle concentrations at different distances from the wall are evaluated and discussed. The results for deposition rates are compared with those obtained from empirical equations.  相似文献   
66.
This study investigated the treatment of an azo dye, as a biorecalcitrant model, from industrial wastewater by using Cu/Mg/Al-chitosan in a fluidized catalyst-bed reactor. A number of variables were used to study the impact they had on the oxidation process involving azo dye. The maximum degradation of the azo dye was achieved at 7 g Cu/Mg/Al-chitosan. The chloride and sulfate ions had a synergistic effect on azo dye removal. The oxidation of the azo dye under the selected conditions was of pseudo-first-order. Textile wastewater could effectively be treated using a low concentration of about 7 g of Cu/Mg/Al-chitosan in a short hydraulic retention time of 10 min. The use of Cu/Mg/Al-chitosan demonstrated a promising method to eliminate the azo dye from the wastewater.  相似文献   
67.

Wall deposition of rigid-link fibrous aerosols in a turbulent channel flow is studied. The instantaneous turbulent velocity vector field is generated by the direct numerical simulation of the Navier-Stokes equation with the aid of a pseudospectral code. It is assumed that the fiber is composed of five rigidly attached ellipsoidal links. The dynamic behavior of these elongated and irregular shaped particles is markedly different from the spherical ones. The hydrodynamic forces and torques acting on the fiber are evaluated and the equations governing the translational and rotational motions of the fiber are analyzed. Euler's four parameters are used, and motions of fibrous particles in the turbulent channel flow field are studied. Ensembles of 8000 fiber trajectories are generated and are used for evaluating various statistics. Root mean-square fiber velocities and fiber concentrations at different distances from the wall are evaluated and discussed. Empirical models for the deposition rate of curly fibers are also developed. The model predictions are compared with the simulation data and good agreement is observed.  相似文献   
68.
Low high density lipoprotein cholesterol (HDL-C) is a known risk factor of coronary artery disease. Apolipoprotein A1 (APOA1) is the most abundant component of HDL-C. This study aimed at identifying sequence variations (rare and common) in the APOA1 gene and its association with serum HDL-C levels. This study was conducted from April 2012 to February 2013 on 79 Tehranians (participants of Tehran Lipid and Glucose Study) with extremely low HDL-C (within the 5th percentile) and 63 individuals with extremely high HDL-C (within the 95th percentile) levels. After DNA amplification by PCR, DNA sequencing of all three exons and 700 bps of promoter region of the APOA1 gene was performed. Sequence results were analyzed and interpreted using the appropriate software and variants were identified. After sequencing 42 common and rare variants were identified, 11 of which were known variants and the others had been unreported so far. Of the exonic variants, 11 were missense, 6 were synonymous and 1 was nonsense. There was a significant association between serum HDL-C and variant of rs2070665 as well as variants Chr.11:116707788, Chr.11:116708059, Chr.11:116708036, Chr.11:116707729, rs201148448, Chr.11:116707018, Chr.11:116707801, Chr.11:116708530, Chr.11:116708088, rs121912724 and Chr.11:116706966 (p < 0.001). Variants Chr.11:116707018, rs121912724 and 2070665 were independent predictors of the HDL-C level (p < 0.001). SNP Chr.11:116707018 was the strongest predictor of the HDL-C level (OR 7.527, p < 0.001). This study identified 42 variants in APOA1 gene, 31 of which were new variants. Three variants of rs2070665, rs121912724 and Chr.11:116707018 could predict the HDL-C level independently. Variant rs2070665 was protective against low-HDL-C levels while variants rs121912724 and Chr.11:116707018 were risk factors for that in our population.  相似文献   
69.
Dolomite, a natural adsorbent, was used for removal of Ag(I), Cu(II) and Co(II) from aqueous solutions. Adsorption parameters including pH, temperature and contact time have been investigated to obtain adsorption mechanism. The results of experiments showed that adsorption of the metal ions increased by increasing pH values up to 5.5. The adsorption process was initially fast. Equilibrium isotherm data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Maximum adsorption capacity of Ag(I), Cu(II) and Co(II) was 1.34, 1.63 and 2.84 mg/g at 20 oC, respectively. Kinetic models including Lagergren first-order and pseudo-second-order were used to test kinetic data. The results showed that pseudo-second-order has good agreement with experimental data. Thermodynamic parameters of the process were also investigated at different temperatures. The negative values of Gibbs free energy and enthalpy changes for Ag(I), Cu(II) and Co(II) indicated the spontaneous and exothermic nature of the adsorption process.  相似文献   
70.
The influence of the type and content of organically modified nanoclay (NC) and the amount of calcium stearate (Ca.St) on the fusion characteristics of a poly(vinyl chloride) (PVC) nanocomposite was studied by using response surface methodology. To interpret the fusion behavior, different PVC/NC compounds were prepared in a Plasticorder with a constant rotor speed of 60 rpm while keeping the processing time and temperature constant. The results revealed that introducing NC particles into the PVC compound resulted in an increase in the maximum torque (MAT), while the minimum torque (MIT) declined. On the contrary, both the MAT and MIT values slightly increased with increasing Ca.St content. It was also found that with increasing NC content, the fusion time increased and the fusion factor decreased, whereas increasing the Ca.St lowered the fusion time. Furthermore, the difference between the MIT and MAT values demonstrated multifarious behaviors depending on the material type. Ultimately, a correlation was established between the material characteristics and the fusion factor of the PVC nanocompounds. J. VINYL ADDIT. TECHNOL., 19:168‐176, 2013. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号