首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2544篇
  免费   166篇
  国内免费   24篇
电工技术   44篇
综合类   7篇
化学工业   765篇
金属工艺   72篇
机械仪表   104篇
建筑科学   107篇
矿业工程   10篇
能源动力   159篇
轻工业   165篇
水利工程   46篇
石油天然气   21篇
无线电   244篇
一般工业技术   406篇
冶金工业   74篇
原子能技术   17篇
自动化技术   493篇
  2024年   3篇
  2023年   43篇
  2022年   78篇
  2021年   174篇
  2020年   125篇
  2019年   175篇
  2018年   209篇
  2017年   186篇
  2016年   170篇
  2015年   112篇
  2014年   206篇
  2013年   278篇
  2012年   174篇
  2011年   193篇
  2010年   154篇
  2009年   108篇
  2008年   71篇
  2007年   42篇
  2006年   40篇
  2005年   29篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   5篇
  2000年   12篇
  1999年   3篇
  1998年   14篇
  1997年   2篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2734条查询结果,搜索用时 218 毫秒
971.
Ad Hoc network is a temporal network which is managed by autonomous nodes which have the ability to communicate with each other without having fixed network infrastructure or any central base station. Due to some reasons such as dynamic changes of the network topology, trusting the nodes to each other, lack of fixed substructure for the analysis of nodes’ behaviours and loss of specific offensive lines, this type of networks is not supportive against malicious nodes’ attacks. One of these attacks is black hole attack. In this attack, the malicious nodes absorb data packets and destroy them. Thus, it is essential to present an algorithm against the black hole attacks. This article suggests a new algorithm which enhances the security of AODV routing protocol to encounter the black hole attacks. This algorithm tries to identify malicious nodes according to nodes’ behaviours in an Ad Hoc network and delete them from routing. The suggested algorithm is simulated by NS2. The simulation results show some improvements in end-to-end delay and packet delivery rate in the suggested algorithm.  相似文献   
972.
Two-step sintering (TSS) was applied on nanocrystalline zinc oxide (ZnO) to control the accelerated grain growth occurring during the final stage of sintering. The grain size of a high-density (>98%) ZnO compact produced by the TSS was smaller than 1 μm, while the grain size of those formed by the conventional sintering method was ∼4 μm. The results showed that the temperature of both sintering steps plays a significant role in densification and grain growth of the nanocrystalline ZnO compacts. Several TSS regimes were analyzed. Based on the results obtained, the optimum regime consisted of heating at 800°C (step 1) and 750°C (step 2), resulting in the formation of a structure containing submicrometer grains (0.68 μm). Heating at 850°C (step 1) and then at 750°C (step 2) resulted in densification and grain growth similar to the conventional sintering process. Lower temperatures, e.g., 800°C (step 1) and 700°C (step 2), resulted in exhaustion of the densification at a relative density of 86%, above which the grains continued to grow. Thermogravimetric analysis results were used to propose a mechanism for sintering of the samples with transmission electron micrographs showing the junctions that pin the boundaries of growing grains and the triple-point drags that result in the grain-boundary curvature.  相似文献   
973.
The Stirling engine can theoretically be very efficient to convert heat into mechanical work at Carnot efficiency. Various parameters could affect the performance of the addressed Stirling engine which is considered in optimisation of the Stirling engine for designing purpose. Through addressed factors, torque has the highest effect on the robustness of the Stirling engines. Due to this fact, determination of the referred parameters with low uncertainty and high precision is needed. To solve the mentioned obstacle, throughout this paper, a generation of intelligent model called ‘artificial neural network’ (ANN) was implemented to estimate the torque of the Stirling heat engine. In addition, highly accurate actual values of the required parameters which were gained from open literature surveys from previous studies were implemented to develop a robust intelligent model. Based on the outcomes of the ANN approach, the output results of an ANN model were close to relevant actual values with a high degree of performance.  相似文献   
974.
Current building codes aim to ensure the acceptable performance of structures implicitly. Because these provisions are empirically developed for low‐ to medium‐rise buildings, their applicability to high‐rise building warrants further investigation. In this paper, the effect of design drift limit on the seismic performance of reinforced concrete dual high‐rise buildings is considered. Nine buildings are designed for 3 drift limits: the code limit (i.e., 2%), one that is lower than the code limit (i.e., 1.5%), and one that is higher than the code limit (i.e., 3%). For each drift limit, buildings of 3 heights (20, 25, and 30 stories) are designed. Finite element models are constructed in OpenSees, and incremental dynamic analysis is performed. The results are used to develop probabilistic seismic demand models, where model parameters are determined using maximum likelihood estimation to incorporate equality and censored data. Reliability analysis using probabilistic demand models is conducted to derive seismic fragility and demand hazard curves. In addition, the collapse performance of the drift limits is evaluated using the Federal Emergency Management Agency (FEMA) P695 procedure. The study results show that the design drift limit affects the building's seismic performance, and the effect depends on the performance level considered. Moreover, from a structural integrity perspective, a larger design drift limit does not induce a significantly higher risk and might yield a more cost‐effective design.  相似文献   
975.
976.
Neural prostheses for restoration of limb movement in paralyzed and amputee patients tend to be complex systems. Subjective intuition and trial-and-error approaches have been applied to the design and clinical fitting of simple systems with limited functionality. These approaches are time consuming, difficult to apply in larger scale, and not applicable to limbs under development with more anthropomorphic motion and actuation. The field of neural prosthetics is in need of more systematic methods, including tools that will allow users to develop accurate models of neural prostheses and simulate their behavior under various conditions before actual manufacturing or clinical application. Such virtual prototyping would provide an efficient and safe test-bed for narrowing the design choices and tuning the control parameters before actual clinical application. We describe a software environment that we have developed to facilitate the construction and modification of accurate mathematical models of paralyzed and prosthetic limbs and simulate their movement under various neural control strategies. These simulations can be run in real time with a stereoscopic display to enable design engineers and prospective users to evaluate a candidate neural prosthetic system and learn to operate it before actually receiving it.  相似文献   
977.
Moini M 《Analytical chemistry》2007,79(11):4241-4246
A robust, reproducible, and single-step interface design between low flow rate separation techniques, such as sheathless capillary electrophoresis (CE) and nanoliquid chromatography (nLC), and mass spectrometry (MS) using electrospray ionization (ESI), is introduced. In this design, the electrical connection to the capillary outlet was achieved through a porous tip at the capillary outlet. The porous section was created by removing 1-1.5 in. of the polyimide coating of the capillary and etching this section by 49% solution of HF until it is porous. The electrical connection to the capillary outlet is achieved simply by inserting the capillary outlet containing the porous tip into the existing ESI needle (metal sheath) and filling the needle with the background electrolyte. Redox reactions of water at the ESI needle and transport of these small ions through the porous tip into the capillary provides the electrical connection for the ESI and for the CE outlet electrode. The etching process reduces the wall thickness of the etched section, including the tip of the capillary, to 5-10 microm, which for a 20-30 microm i.d. capillary results in stable electrospray at approximately 1.5 kV. The design is suitable for interfacing a wide range of capillary sizes with a wide range of flow rates to MS via ESI, but it is especially useful for interfacing narrow (<30 microm i.d.) capillaries and low flow rates (<100 nL/min). The advantages of the porous tip design include the following: (1) its fabrication is reproducible, can be automated, and does not require any mechanical tools. (2) The etching process reduces the tip outer diameter and makes the capillary porous in one step. (3) The interface can be used for both nLC-MS and CE-MS. (4) If blocked or damaged, a small section of the tip can be etched off without any loss of performance. (5) The interface design leaves the capillary inner wall intact and, therefore, does not add any dead volume to the CE-MS or nLC-MS interface. (6) Bubble formation due to redox reactions of water at the high-voltage electrode is outside of the separation capillary and does not affect separation or MS performances. The performance of this interface is demonstrated by the analyses of amino acids, peptide, and protein mixtures.  相似文献   
978.
In this paper, an optimum and intelligent method is proposed for islanding detection using wavelet transform. The suggested relay is based on neural network (NN) in which different heuristic algorithms are used for training the NN. In the proposed method, the appropriate signals for detection procedure as well as mother wavelet are selected optimally, based on the mean square error (MSE) concept. Lately, the desired relay is trained by the optimally selected signals using four different algorithms and the optimum condition of the fault detector is identified. Simulation results approved that non detection zone (NDZ) has a significant reduction utilising the proposed intelligent technique. The contributions of the proposed method include presenting an appropriate signal selection method based on MSE, selecting optimum number of relay input signals using the proposed technique, fast training of intelligent relay by using least information, solving threshold selection problem and reduction of NDZ approximately to zero.  相似文献   
979.
In recent decades, many researchers have conducted research studies on structural control to improve the safety and serviceability of high‐rise buildings against earthquakes and strong winds. On the other hand, applying active control systems and controlling strategies in buildings are costly process, and it is necessary to reduce the number of controllers. In this paper, a multiobjective genetic algorithm is proposed to optimize the placement of active tendons in a 2D shear frame and a 3D irregular building considering soil–structure interaction effect to reduce active control cost and response of structures at the same time. For multiobjective optimization, multiobjective genetic algorithm of the MATLAB toolbox is used to find a set of Pareto optimal solutions for a multiobjective minimization. The results indicate that the method is capable of finding the number and location of the required active tendons in both 2D shear frame and 3D irregular building with 10 and 20 stories while the base shear of structure is minimized. The specific advantage of the employed algorithms is to reduce the number of mounted active tendons approximately by 50%.  相似文献   
980.
The M06‐2X/6‐311G(d,p) and B3LYP/6‐311G(d,p) density functional methods and electrostatic potential analysis were used for calculation of enthalpy of sublimation, crystal density and enthalpy of formation of some thermally stable explosives in the gas and solid phases. These data were used for prediction of their detonation properties including heat of detonation, detonation pressure, detonation velocity, detonation temperature, electric spark sensitivity, impact sensitivity and deflagration temperature using appropriate methods. The range of different properties for these compounds are: crystal density 1.51–2.01 g cm−3, enthalpy of sublimation 346.4–424.7 kJ mol−1, the solid phase enthalpy of formation 500.4–860.6 kJ mol−1, heat of detonation 13.64–17.57 kJ g−1, detonation pressure 33.0–37.0 GPa, detonation velocity 8.5–9.5 km s−1, detonation temperature 5488–6234 K, electric spark sensitivity 7.89–9.47 J, impact sensitivity 21–38 J, deflagration temperature 560–586 K and power [%TNT] 207–276. The results show that two novel energetic compounds N,N′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(5‐nitro‐4H‐1,2,4‐triazol‐3‐amine) (DDTNPNT3A) and 1,1′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(3‐nitro‐1H‐1,2,4‐triazol‐5‐amine) (DDTNPNT5A) can be introduced as thermally explosives with high detonation performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号