首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   66篇
  国内免费   15篇
电工技术   25篇
综合类   4篇
化学工业   261篇
金属工艺   28篇
机械仪表   48篇
建筑科学   29篇
能源动力   82篇
轻工业   103篇
水利工程   3篇
石油天然气   5篇
武器工业   1篇
无线电   116篇
一般工业技术   282篇
冶金工业   63篇
原子能技术   22篇
自动化技术   139篇
  2024年   2篇
  2023年   28篇
  2022年   84篇
  2021年   88篇
  2020年   69篇
  2019年   67篇
  2018年   81篇
  2017年   54篇
  2016年   69篇
  2015年   42篇
  2014年   56篇
  2013年   89篇
  2012年   50篇
  2011年   65篇
  2010年   32篇
  2009年   43篇
  2008年   31篇
  2007年   36篇
  2006年   21篇
  2005年   27篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   18篇
  1997年   12篇
  1996年   8篇
  1995年   6篇
  1994年   12篇
  1993年   7篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1966年   1篇
排序方式: 共有1211条查询结果,搜索用时 15 毫秒
11.
Scalability is one of the most important quality attribute of software-intensive systems, because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload. In order to achieve scalability, thread pool system (TPS) (which is also known as executor service) has been used extensively as a middleware service in software-intensive systems. TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime. In case of distributed-TPS (DTPS), another issue is the load balancing b/w available set of TPSs running at backend servers. Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload. Consequently, the performance of software-intensive system is suffered. Thus, in this paper, we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword. On the one hand, it effectively performs the load balancing (in case of overload situation) among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs. And on the other hand, its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size, because the pool size in each TPS is kept equal to the request rate on it, hence dynamically optimizes TPS. We evaluated the results of the proposed system against state of the art DTPSs by a client-server based simulator and found that our system outperformed by sustaining smaller response times.  相似文献   
12.
This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic simulator has been deployed for numerical simulation of the unit cell in the frequency range of 4 to 14 GHz. In the TE mode, the offered MA structure demonstrated three different absorption peaks at 6.85 GHz (C-band), 8.87 GHz (X-band), and 12.03 GHz (Ku-band), with 96.82%, 99.24%, and 99.43% absorptivity, respectively. The electric field, magnetic field, and surface current distribution were analysed using Maxwell’s-Curl equations, whereas the angle sensitivity was investigated to comprehend the absorption mechanism of the proposed absorber. The numerical results were verified using the Ansys HFSS (high-frequency structure simulator) and ADS (advanced design system) for equivalent circuit models. Moreover, the proposed MA is polarisation and incident angle independent. Hence, the application of this MA can be extended to a great extent, including airborne radar applications, defence, and stealth-coating technology.  相似文献   
13.
Continuous flow to send images via encrypted wireless channels may reduce the efficiency of transmission. This is due to the damage or loss of the numerous macro-blocks from these images. Therefore, it is difficult to rebuild these patches from the point of reception. Many algorithms have been proposed in the past decade, particularly error concealment (EC) algorithms. In this paper, we focus on the algorithms that have high efficiency to fill-in the corrupted patches. On the other hand, we also present a new way of detecting the horizontal and vertical gradients especially, in the un-smooth patches. This improves the edge detector filter. Ultimately, a novel scheme for vertical and horizontal interpolation between the corrupted pixels and the non-corrupted adjacent pixels is achieved by improving the efficiency of filling-in. We used a new technique known as the wave-net model. This model combines the wavelet with the neural network classifier (NNC). The neural network was trained in advance to reduce the error extent for the pixels that may occur in the error. The experimental results were convincing and close to the desired. The proposed method is able to enhance image quality in term of both visual perception and the blurriness effects (BE).  相似文献   
14.
The present study presents a methodology for detailed reliability analysis of nuclear containment without metallic liners against aircraft crash. For this purpose, a nonlinear limit state function has been derived using violation of tolerable crack width as failure criterion. This criterion has been considered as failure criterion because radioactive radiations may come out if size of crack becomes more than the tolerable crack width. The derived limit state uses the response of containment that has been obtained from a detailed dynamic analysis of nuclear containment under an impact of a large size Boeing jet aircraft. Using this response in conjunction with limit state function, the reliabilities and probabilities of failures are obtained at a number of vulnerable locations employing an efficient first-order reliability method (FORM). These values of reliability and probability of failure at various vulnerable locations are then used for the estimation of conditional and annual reliabilities of nuclear containment as a function of its location from the airport. To study the influence of the various random variables on containment reliability the sensitivity analysis has been performed. Some parametric studies have also been included to obtain the results of field and academic interest.  相似文献   
15.
Optimization of abrasive water jet cutting of ductile materials   总被引:1,自引:0,他引:1  
Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material. Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.  相似文献   
16.
Adsorption of industrially important dyes namely bromophenol blue, alizarine red-S, methyl blue, methylene blue, eriochrome black-T, malachite green, phenol red and methyl violet from aqueous media on activated charcoal has been investigated. The effect of shaking time, pH and temperature on the adsorption behaviour of these dyes has been studied. It was noted that adsorption of all the dyes on activated charcoal decreases with an increase in the pH and the temperature. The adsorption isotherms at different temperatures were found to be of L-type. Adsorption data was fitted to Freundlich, BET and Langmuir isotherms and various adsorption parameters have been calculated. The thermodynamic parameters such as DeltaG, DeltaH and DeltaS were calculated from the slopes and intercepts of the linear variation of lnK against 1/T, where K is the adsorption coefficient obtained from Langmuir equation, was used. The calculated values for the heat of adsorption and the free energy indicate that adsorption of dyes is favored at low temperatures and the dyes are chemisorbed on activated charcoal.  相似文献   
17.
The rapid development and progress in deep machine-learning techniques have become a key factor in solving the future challenges of humanity. Vision-based target detection and object classification have been improved due to the development of deep learning algorithms. Data fusion in autonomous driving is a fact and a prerequisite task of data preprocessing from multi-sensors that provide a precise, well-engineered, and complete detection of objects, scene or events. The target of the current study is to develop an in-vehicle information system to prevent or at least mitigate traffic issues related to parking detection and traffic congestion detection. In this study we examined to solve these problems described by (1) extracting region-of-interest in the images (2) vehicle detection based on instance segmentation, and (3) building deep learning model based on the key features obtained from input parking images. We build a deep machine learning algorithm that enables collecting real video-camera feeds from vision sensors and predicting free parking spaces. Image augmentation techniques were performed using edge detection, cropping, refined by rotating, thresholding, resizing, or color augment to predict the region of bounding boxes. A deep convolutional neural network F-MTCNN model is proposed that simultaneously capable for compiling, training, validating and testing on parking video frames through video-camera. The results of proposed model employing on publicly available PK-Lot parking dataset and the optimized model achieved a relatively higher accuracy 97.6% than previous reported methodologies. Moreover, this article presents mathematical and simulation results using state-of-the-art deep learning technologies for smart parking space detection. The results are verified using Python, TensorFlow, OpenCV computer simulation frameworks.  相似文献   
18.
Mn doped ZnO nanostructures have been prepared using low temperature simple, quick, and versatile synthesis approach. The structural, microstructural, and vibrational investigations reveal that as prepared nanostructures with low Mn doping concentration have single hexagonal phase and are grown along the preferred c-axis. The X-rays photoelectron spectroscopy demonstrates that the Mn ions are in mixed oxidation states for high doping concentration of Mn, while are in 2+ oxidation state for low concentration into ZnO lattice. The photoluminescence spectrum (PL) exhibits a significant red-shift of 22 nm in the optical band gap of doped ZnO and shows the improved luminescence properties, which makes it potential for its use in the photocatalyst, optoelectronics and solar cell nanodevices. Furthermore, the magnetic measurement of Mn doped ZnO nanostructures exhibits the ferromagnetism at room temperature.  相似文献   
19.
This study proposes a novel prediction approach for human breast and colon cancers using different feature spaces. The proposed scheme consists of two stages: the preprocessor and the predictor. In the preprocessor stage, the mega-trend diffusion (MTD) technique is employed to increase the samples of the minority class, thereby balancing the dataset. In the predictor stage, machine-learning approaches of K-nearest neighbor (KNN) and support vector machines (SVM) are used to develop hybrid MTD-SVM and MTD-KNN prediction models. MTD-SVM model has provided the best values of accuracy, G-mean and Matthew's correlation coefficient of 96.71%, 96.70% and 71.98% for cancer/non-cancer dataset, breast/non-breast cancer dataset and colon/non-colon cancer dataset, respectively. We found that hybrid MTD-SVM is the best with respect to prediction performance and computational cost. MTD-KNN model has achieved moderately better prediction as compared to hybrid MTD-NB (Naïve Bayes) but at the expense of higher computing cost. MTD-KNN model is faster than MTD-RF (random forest) but its prediction is not better than MTD-RF. To the best of our knowledge, the reported results are the best results, so far, for these datasets. The proposed scheme indicates that the developed models can be used as a tool for the prediction of cancer. This scheme may be useful for study of any sequential information such as protein sequence or any nucleic acid sequence.  相似文献   
20.
Bearings play a crucial role in rotational machines and their failure is one of the foremost causes of breakdowns in rotary machinery. Their functionality is directly relevant to the operational performance, service life and efficiency of these machines. Therefore, bearing fault identification is very significant. The accuracy of fault or anomaly detection by the current techniques is not adequate. We propose a data mining-based framework for fault identification and anomaly detection from machine vibration data. In this framework, to capture the useful knowledge from the vibration data stream (VDS), we first pre-process the data using Fast Fourier Transform (FFT) to extract the frequency signature and then build a compact tree called SAFP-tree (sliding window associated frequency pattern tree), and propose a mining algorithm called SAFP. Our SAFP algorithm can mine associated frequency patterns (i.e., fault frequency signatures) in the current window of VDS and use them to identify faults in the bearing data. Finally, SAFP is further enhanced to SAFP-AD for anomaly detection by determining the normal behavior measure (NBM) from the extracted frequency patterns. The results show that our technique is very efficient in identifying faults and detecting anomalies over VDS and can be used for remote machine health diagnosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号