首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   3篇
电工技术   4篇
化学工业   103篇
金属工艺   2篇
建筑科学   1篇
轻工业   1篇
一般工业技术   22篇
冶金工业   31篇
自动化技术   13篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   10篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  2000年   13篇
  1999年   8篇
  1998年   17篇
  1997年   15篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1982年   1篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1933年   1篇
排序方式: 共有177条查询结果,搜索用时 156 毫秒
61.
This paper discusses the effect of uniaxial compressive stress and pressureless constraint on the microstructure, density, and shrinkage anisotropy during the sintering of two commercial low-temperature co-fired ceramic (LTCC) systems, i.e., Heraeus CT2000 (CT) and DuPont 951Tape (DU). Under uniaxial compression, the ratio of axial to transverse shrinkage of DU is significantly higher than that of CT. A simple linear viscous theory was used to estimate the change in the strain rates produced by the external stress and the stress required to produce zero shrinkage. The theory was found to overestimate the measured stress-induced strain rates. The uniaxial compressive stress required for zero overall shrinkage was estimated to be ∼60 kPa for DU and 80 kPa for CT. The estimate for the DU materials was in good agreement with the experimental data, but there was significant deviation for the CT material. Higher viscosity and higher constraining stresses led to lower densities in pressure-less constrained CT specimens compared with DU.  相似文献   
62.
63.
A bending creep test is proposed for measuring the change in viscosity of a porous material during densification. Equations, based on simple beam deflection theory, were derived to obtain the viscosity from a series of loading experiments using rectangular samples of different densities. By measuring the deflection in the center of the specimen between the spans, the viscosity of a porous material during densification can be measured. Experiments with porous Y2O3-stabilized ZrO2 beams were used to illustrate the bending creep test. Consistent with theory the viscosity increased from 50 to 400 GPa·s as the sample densified from 87% to 98% density. The rapid increase in viscosity was considered to be a result of both densification and grain growth.  相似文献   
64.
We have examined the regeneration of corticospinal tract fibers and expression of various extracellular matrix (ECM) molecules and intermediate filaments [vimentin and glial fibrillary acidic protein (GFAP)] after dorsal hemisection of the spinal cord of adult GFAP-null and wild-type littermate control mice. The expression of these molecules was also examined in the uninjured spinal cord. There was no increase in axon sprouting or long distance regeneration in GFAP-/- mice compared to the wild type. In the uninjured spinal cord (i) GFAP was expressed in the wild type but not the mutant mice, while vimentin was expressed in astrocytes in the white matter of both types of mice; (ii) laminin and fibronectin immunoreactivity was localized to blood vessels and meninges; (iii) tenascin and chondroitin sulfate proteoglycan (CSPG) labeling was detected in astrocytes and the nodes of Ranvier in the white matter; and (iv) in addition, CSPG labeling which was generally less intense in the gray matter of mutant mice. Ten days after hemisection there was a large increase in vimentin+ cells at the lesion site in both groups of mice. These include astrocytes as well as meningeal cells that migrate into the wound. The center of these lesions was filled by laminin+/fibronectin+ cells. Discrete strands of tenascin-like immunoreactivity were seen in the core of the lesion and lining its walls. Marked increases in CSPG labeling was observed in the CNS parenchyma on either side of the lesion. These results indicate that the absence of GFAP in reactive astrocytes does not alter axonal sprouting or regeneration. In addition, except for CSPG, the expression of various ECM molecules appears unaltered in GFAP-/- mice.  相似文献   
65.
66.
The conversion of 14C-maltose into glucose, lactate and 14 CO2 was studied in perfused livers from fed and fasted rats and in isolated hepatocytes. Maximal glucose production was 30 mM x g-1 x h-1; half-maximal rates were found with 3 mM maltose. About 0.01 % of the radioactivity infused was recovered as 14CO2. The addition of maltose had no effect on rates of oxygen consumption, lactate production or ketogenesis. The data suggest that maltose did not serve as a major substrate for biosynthetic or energy producing processes under the conditions of the perfused rat liver.  相似文献   
67.
Transparent YAG ceramics were prepared by slip casting an aqueous dispersed mixture of commercial Al2O3 and Y2O3 powders. The powders were co-dispersed with poly(acrylic acid) and citric acid. Polyethylene glycol of 0.5 wt.% (PEG 4000) and 0.5 wt.% tetraethyl orthosilicate were added as binder and a sintering aid, respectively. Dried samples were vacuum sintered at 1800 °C for 16 h. In general, YAG ceramics cast from Newtonian suspensions were optically transparent and had optical transmittances >80% from 340 to 840 nm. Slightly flocculated dispersions, as evidenced by higher viscosity and non-Newtonian rheology, resulted in translucent samples with large pores and lower optical transmittances.  相似文献   
68.
Soot particle (black carbon) morphology is of dual interest, both from a health perspective and due to the influence of soot on the global climate. In this study, the mass-mobility relationships, and thus effective densities, of soot agglomerates from three types of soot emitting sources were determined in situ by combining a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). High-resolution transmission electron microscopy was also used. The soot sources were diesel engines, diffusion flame soot generators, and tapered candles, operated under varying conditions. The soot microstructure was found to be similar for all sources and settings tested, with a distance between the graphene layers of 3.7–3.8 Å. The particle specific surface area was found to vary from 100 to 260 m2/g. The particle mass-mobility relationship could be described by a power law function with an average exponent of 2.3 (±0.1) for sources with a volatile mass fraction <10% and primary particle sizes of 11–29 nm. The diesel exhaust from a heavy duty engine at idling had a substantially higher volatile mass fraction and a higher mass-mobility exponent of 2.6. The mass-mobility exponent was essentially independent of the number of primary particles in the range covered (Npp = 10–1000). Despite the similar exponents, the effective density varied substantially from source to source. Two parameters were found to alter the effective density: primary particle size and coating mass fraction. A correlation was found between primary particle size and mass-mobility relationship/effective density and an empirical expression relating these parameters is presented. The effects on the DMA-APM results of doubly charged particles and DMA agglomerate alignment were investigated and quantified. Finally, the dataset was compared to three theoretical approaches describing agglomerate particles’ mass-mobility relationship.

Copyright 2013 American Association for Aerosol Research  相似文献   
69.
The quality of crystallographic alignment in textured ceramics produced by tape casting and templated grain growth (TGG) has been little studied despite its demonstrated impact on magnetic, piezoelectric, and optical properties. Physical and crystallographic alignment of anisotropic template particles is shown to be directly linked to the casting rate, gap height, and casting viscosity during tape casting. These parameters are shown to affect the shape and magnitude of the shear rate profile under the doctor blade during casting which in turn causes a gradient in the torque acting on anisotropic particles. The magnitude of the torque, the time the slurry is exposed to torque during casting, and the ratio of casting height to template diameter are demonstrated to enable the particle alignment process to be tailored to produce well-aligned template particles. Crystallographic alignment of the textured ceramic was quantified by grain misalignment angle (full width at half maximum, FWHM) and degree of orientation (r) and is directly correlated with the degree of torque during casting. High-quality alignment (FWHM = 4.5°; = 0.13) was demonstrated in the model TGG system consisting of submicrometer alumina and 5 vol% 11 μm diameter template platelet particles.  相似文献   
70.
Development of Textured Mullite by Templated Grain Growth   总被引:4,自引:0,他引:4  
Highly textured mullite was obtained by enhancing anisotropic grain growth by TiO2 doping and by templating grain growth on oriented acicular mullite seed particles in a mullite precursor. Upon heating, the mullite precursor crystallized and densified to an equiaxed microstructure of 1-2 µm mullite grains at which time the mullite seed particles grew rapidly in the length direction ( c -axis) to produce a highly textured microstructure. By changing the seed (template) particle concentration, a range of oriented microstructures and anisotropic grains could be produced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号