首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   29篇
电工技术   11篇
综合类   2篇
化学工业   68篇
金属工艺   4篇
机械仪表   12篇
建筑科学   20篇
能源动力   50篇
轻工业   31篇
水利工程   1篇
石油天然气   3篇
无线电   67篇
一般工业技术   104篇
冶金工业   27篇
原子能技术   1篇
自动化技术   57篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   14篇
  2020年   20篇
  2019年   17篇
  2018年   19篇
  2017年   24篇
  2016年   28篇
  2015年   4篇
  2014年   23篇
  2013年   35篇
  2012年   25篇
  2011年   34篇
  2010年   29篇
  2009年   40篇
  2008年   33篇
  2007年   25篇
  2006年   14篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
451.
452.
With the increasing size and complexity of software in embedded systems, software has now become a primary threat for the reliability. Several mature conventional reliability engineering techniques exist in literature but traditionally these have primarily addressed failures in hardware components and usually assume the availability of a running system. Software architecture analysis methods aim to analyze the quality of software-intensive system early at the software architecture design level and before a system is implemented. We propose a Software Architecture Reliability Analysis Approach (SARAH) that benefits from mature reliability engineering techniques and scenario-based software architecture analysis to provide an early software reliability analysis at the architecture design level. SARAH defines the notion of failure scenario model that is based on the Failure Modes and Effects Analysis method (FMEA) in the reliability engineering domain. The failure scenario model is applied to represent so-called failure scenarios that are utilized to derive fault tree sets (FTS). Fault tree sets are utilized to provide a severity analysis for the overall software architecture and the individual architectural elements. Despite conventional reliability analysis techniques which prioritize failures based on criteria such as safety concerns, in SARAH failure scenarios are prioritized based on severity from the end-user perspective. SARAH results in a failure analysis report that can be utilized to identify architectural tactics for improving the reliability of the software architecture. The approach is illustrated using an industrial case for analyzing reliability of the software architecture of the next release of a Digital TV.  相似文献   
453.
454.
In this study, manganese ferrite (MnFe2O4) nanoparticles were produced through flame spray pyrolysis (FSP). To investigate the effects of heat treatment, the nanoparticles were annealed between 400 and 650°C for 4 h in air in a comparative manner. The structural, chemical, morphological, and magnetic properties of the nanoparticles were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM), respectively. The XRD results showed that the nanoparticles synthesized by the FSP method exhibited the MnFe2O4 spinel ferrite structure. The annealing process led to the decomposition of MnFe2O4 into various phases. According to the morphological analysis, the as-synthesized particles were hemispherical–cubic in shape and had an average particle size of less than 100 nm. In addition, the chemical bond structures of the nanoparticles were confirmed in detail by XPS elemental analysis. The highest saturation magnetization was recorded as 33.50 emu/g for the as-produced nanoparticles. The saturation magnetization of the nanoparticles decreased with increasing annealing temperature, while coercivity increased.  相似文献   
455.
Structural colorful cholesterics show impressive susceptibility to external stimulation, leading to applications in electro/mechano-chromic devices. However, out-of-plane actuation of structural colorful actuators based on cholesterics and the integration with other stimulation remains underdeveloped. Herein, colorful actuators and motile humidity sensors are developed using humidity-responsive cholesteric liquid crystal networks (CLCNs) and magnetic composites. The developed colorful actuator can exhibit synergistic out-of-plane shape morphing and color change in response to humidity, with CLCNs as colorful artificial muscles. Through the integration with magnetic control, the motile sensor can be navigated to open and confined spaces with the aid of friction to detect local relative humidity. The integration of multi-stimulation actuation of cholesteric magnetic actuators will expand the research frontier of structural colorful actuators and motile sensors for confined spaces.  相似文献   
456.
Silicon - In this study, structural and electrical properties of Ag/TiO2/n-InP/Au Schottky barrier diodes, constructed with sputtering method on n-InP wafer, are investigated. Particle size, d-...  相似文献   
457.
Research on molecular crystals exhibiting light-driven actuation has made remarkable progress through the development of various molecules and the identification of driving mechanisms. However, crystals developed to date have been driven mainly by ultraviolet (UV) or blue light irradiation, and driving by red or near-infrared (NIR) light has not been attempted yet. Herein, a broad-wavelength light-driven molecular crystals that exhibit high-speed bending by photothermal effect is developed. Titanium carbide (Ti3C2Tx) MXene nanosheets are integrated into salicylideneaniline crystals to extend the wavelength range that causes photothermally driven bending to UV, visible, and NIR light. In addition, unlike the thin pristine molecular crystals that show slow photoisomerization-induced bending only under UV light, the MXene layer enables the molecular crystals to be actuated rapidly regardless of their thickness over a wide range of wavelengths. The hybridization of molecular crystals with MXene, which exhibits strong biocompatibility as well as NIR light-driven photothermal effect, allows for the bending of the hybrid crystals inside agar phantoms mimicking biological tissue. Last, it is confirmed that MXene hybridization can be extended to common molecular crystals including various salicylideneaniline and anisole derivatives.  相似文献   
458.
The rapid growth in the miniaturized mechanical and electronic devices industry has created the need for temporary attachment systems that can carry out pick-and-place and transfer printing tasks for fragile and tiny parts. Current systems are limited by a fundamental trade-off between adhesive strength and state-changing trigger force, which causes the need for a rapidly switchable adhesive. In this study, an elastomeric microstructure is presented combining a trapezoidal-prism-shaped (TPS) and a mushroom-shaped microstructure, which overcomes the trade-off with the help of the TPS structure. The optimal design exhibits a strong adhesive strength of 87.8 kPa and a negligible detachment strength of <0.07 kPa with a low trigger shear stress of 10.7 kPa on smooth glass surfaces. The large tip-to-stem ratio (50 to 20 µm) enhances the suction effect, allowing the microstructure to maintain its adhesive performance even in wet conditions. Pick-and-place manipulation tasks of a single and an array of ultralight parts from micrometer to millimeter scales are performed to demonstrate the capability of handling fragile and tiny parts. Moreover, it demonstrates the ability to transfer parts across water and air interfaces. This proposed microstructure offers a facile solution for manipulating microscale fragile parts in dry and wet conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号