首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学工业   12篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
能源动力   2篇
轻工业   2篇
石油天然气   1篇
无线电   1篇
一般工业技术   5篇
冶金工业   2篇
自动化技术   5篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1989年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
11.
The article discusses the development and operational details of Differential Absorption LiDAR (DIAL) for the measurement of methane concentration in the semi-urban environment of Gauhati University. The system comprises two specifically selected wavelengths in 3 μm range: one is an absorbing wavelength (λon) and the other is non-absorbed (λoff) by methane molecules. Pulses of 10 ns for the two wavelengths are transmitted alternately for interleaved sampling of differential absorption. The pulse repetition rate is variable between 1 and 20 Hz. The slope and integrated target approaches are adopted to calculate the methane concentration, and observed figures are compared with globally reported values.  相似文献   
12.
Using the spherical coordinate system in conjunction with the principle of algebraic correspondence between the displacement equations of the plane, spherical and spatial four-bar mechanisms and the plane and spatial slider-crank mechanisms, an efficacious procedure has been developed to carry out kinematic analysis for the coupler and output link of the mechanisms. The iteration-free nature of the procedure precludes any non-convergence problem and the inherent complexity of the 3-dimensional analysis is mitigated substantially.  相似文献   
13.
The objective of this work is to investigate a water based sodium battery technology. The new concept proposed here for an aqueous rechargeable battery is replacing lithium hydroxide with a sodium hydroxide electrolyte in the patented technology developed at Murdoch University. Alternative energy storage system using abundantly available sodium as the aqueous electrolyte coupled with Zn anode and environmentally friendly MnO2 cathode are investigated and found feasible. Sodium intercalation and de-intercalation mechanism is identified in MnO2|NaOH|Zn cell yielding 225 against 142 mAh/g for LiOH counterpart. The preliminary studies of the aqueous NaOH battery showed improved energy density and voltaic efficiency.  相似文献   
14.
The cure kinetics of vinyl ester-styrene system was studied by non-isothermal differential scanning calorimetric (DSC) technique at four different heating rates. The kinetic parameters of the curing process were determined by isoconversional method for the kinetic analysis of the data obtained by the thermal treatment. Activation energy (Ea = 56.63 kJ mol−1) was evaluated for the cure process and a two-parameter (m, n) autocatalytic model was found to be the most adequate to describe the cure kinetics of the studied cardanol-based vinyl ester resin. Non-isothermal DSC curves, as obtained by using the experimental data, show good agreement with the DSC curves obtained by theoretically calculated data.  相似文献   
15.
Detergent fractionation (Lanza process) offers a valuable separation process for edible oils that contain varying amounts of saturated and unsaturated fatty acids. The rice bran oil fatty acid distillate (RBOFAD), obtained as a major byproduct of rice bran oil deacidification refining process, was fractionated by detergent solution into a fatty acid mixture as follows: low-melting (19.00 °C) fraction of fatty acids as olein fraction (44.50 g/100 g) and high-melting (49.00 °C) fatty acids as stearin fraction (37.15 g/100 g). A high amount of palmitic acid (42.75 wt%) is present in stearin fraction, while oleic acid is higher (48.21 wt%) in the olein fraction. The stearin and olein fractions of RBOFAD with very high content of free fatty acids are converted into neutral glycerides by autocatalytic esterification reaction with a theoretical amount of glycerol at high temperatures (130–230 °C) and at a reduced pressure (30 mmHg). Acid value, peroxide value, saponification value, and unsaponifiable matters are important analytical parameters to identity for quality assurance. These neutral glyceride-rich stearin and olein fractions, along with unsaponifiable matters, can be used as nutritionally and functionally superior quality food ingredients in margarine and in baked goods as shortenings.  相似文献   
16.
Multimedia Tools and Applications - In remote sensing (RS) community, RSIR (Remote Sensing Image Retrieval) is considered as a tough topic and gained more attention because the data is collected...  相似文献   
17.
A manganese dioxide (MnO2) cathode with zinc (Zn) as the anode has been investigated using lithium sulphate (Li2SO4) as an electrolyte. Previously we demonstrated that cells comprising MnO2 and lithium hydroxide (LiOH) as an electrolyte can be made rechargeable to over one-electron capacity with a discharge capacity of 150 mAh g−1. Here we have extended our work to assess Li2SO4 as an electrolyte and have found that the battery is not rechargeable. Based on the electrochemical (discharge/charge) performance and the products formed following discharge and charge, the mechanism proposed for the sulphate-based media is one of proton insertion into the MnO2 cathode, rather than the lithium ion insertion observed for the LiOH electrolyte. The addition of bismuth species to the Li2SO4-based cell results in a transition to rechargeable behaviour. This is believed to be due to the influence of Bi ions on the formation of soluble Mn3+ soluble intermediates. However, the coulombic efficiency of the cell diminishes rapidly with repeated charge/discharge cycles. This confirms that the nature of the Li-containing electrolyte has a marked influence on the electrochemistry of the cell.  相似文献   
18.
The commercial, alkaline zinc-manganese dioxide (Zn-MnO2) primary battery has been transformed into a secondary battery using lithium hydroxide electrolyte. Galvanostatic discharge–charge experiments showed that the capacity decline of the Zn-MnO2 battery is not caused by the MnO2 cathode, but by the zinc anode. The electrochemical data indicated that a rechargeable battery made of porous zinc anode can have a larger discharge capacity of 220 mAh/g than a planar zinc anode of 130 mAh/g. The cycling performance of these two anodes is demonstrated. Structural and depth profile analyses of the discharged anodes are examined by X-ray diffraction (XRD) and elastic recoil detection analysis (ERDA) techniques.  相似文献   
19.
The quick progress in health care technology as a recurrent measurement of biochemical factors such as blood components leads to advance development and growth in biosensor technology necessary for effectual patient concern. The review wok of authors present a concise information and brief discussion on the development made in the progress of potentiometric, field effect transistor, graphene, electrochemical, optical, polymeric, nanoparticles and nanocomposites based urea biosensors in the past two decades. The work of authors is also centred on different procedures/methods for detection of urea by using amperometric, potentiometric, conductometric and optical processes, where graphene, polymer etc. are utilised as an immobilised material for the fabrication of biosensors. Further, a comparative revision has been accomplished on various procedures of urea analysis using different materials‐based biosensors, and it discloses that electrochemical and potentiometric biosensor is the most promise one among all, in terms of rapid response time, extensive shelf life and resourceful design.  相似文献   
20.
Concept of five-levels-four-factors central composite rotatable design was utilized for the optimization of reaction conditions of cardanol-based vinyl ester resin production, by employing response surfaces methodology, to establish a relationship between the process variables and the extent of conversion under a wide range of operating conditions which resulted in different extent of conversions. The maximum extent of conversion of cardanol-based epoxidised novolac resin (CNE) and methacrylic acid (MA) catalyzed by triphenylphosphine was found to be 95% at optimum set of conditions of molar ratio (1:0.9) between CNE and MA, catalyst concentration (1.49%), reaction temperature (89.96 °C) and reaction time (17,991s). Geometrical representation of the mathematical models in three-dimensional response surface plots and isoresponse contour plots served as a good aid in understanding the behavior of reaction under different operating conditions by only limited sets of experiments. A statistical model predicted that the highest conversion yield of novolac resin would be greater than 95% at the optimized reaction conditions. The predicted values thus obtained were close to the experimental values indicating suitability of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号