首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1950篇
  免费   123篇
  国内免费   7篇
电工技术   29篇
综合类   9篇
化学工业   661篇
金属工艺   40篇
机械仪表   69篇
建筑科学   49篇
能源动力   147篇
轻工业   265篇
水利工程   17篇
石油天然气   9篇
无线电   169篇
一般工业技术   321篇
冶金工业   35篇
原子能技术   4篇
自动化技术   256篇
  2024年   5篇
  2023年   37篇
  2022年   93篇
  2021年   142篇
  2020年   96篇
  2019年   99篇
  2018年   128篇
  2017年   113篇
  2016年   133篇
  2015年   96篇
  2014年   131篇
  2013年   219篇
  2012年   181篇
  2011年   162篇
  2010年   96篇
  2009年   74篇
  2008年   40篇
  2007年   32篇
  2006年   27篇
  2005年   25篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2080条查询结果,搜索用时 31 毫秒
991.
This paper presents a technique for designing a low power SRAM cell. The cell achieves low power dissipation due to its series connected drivers driven by bitlines and read buffers which offer stack effect. The paper investigates the impact of process, voltage, and temperature (PVT) variations on standby leakage and finds appreciable improvement in power dissipation. It also estimates read/write delay, read stability, write-ability, and compares the results with that of standard 6T SRAM cell. The comparative study based on Monte Carlo simulation exhibits appreciable improvement in leakage power dissipation and other design metrics at the expense of 84% area overhead.  相似文献   
992.
Sn-Ag-Cu (SAC) alloy is currently recognized as the standard lead-free solder alloy for packaging of interconnects in the electronics industry, and high- Ag-content SAC alloys are the most popular choice. However, this choice has been encumbered by the fragility of the solder joints that has been observed in drop testing as well as the high cost of the Ag itself. Therefore, low-Ag-content SAC alloy was considered as a solution for both issues. However, this approach may compromise the thermal-cycling performance of the solders. Therefore, to enhance the thermal-cycling reliability of low-Ag-content SAC alloys without sacrificing their drop-impact performance, alloying elements such as Mn, Ce, Ti, Bi, In, Sb, Ni, Zn, Al, Fe, and Co were selected as additions to these alloys. However, research reports related to these modified SAC alloys are limited. To address this paucity, the present study reviews the effect of these minor alloying elements on the solder joint reliability of low-Ag-content SAC alloys in terms of thermal cycling and drop impact. Addition of Mn, Ce, Bi, and Ni to low-Ag-content SAC solder effectively improves the thermal-cycling reliability of joints without sacrificing the drop-impact performance. Taking into consideration the improvement in the bulk alloy microstructure and mechanical properties, wetting properties, and growth suppression of the interface intermetallic compound (IMC) layers, addition of Ti, In, Sb, Zn, Al, Fe, and Co to low-Ag-content SAC solder has the potential to improve the thermal-cycling reliability of joints without sacrificing the drop-impact performance. Consequently, further investigations of both thermal-cycling and drop reliability of these modified solder joints must be carried out in future work.  相似文献   
993.
This work investigates the effects of 0.1?wt.% and 0.5?wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1?wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5?wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1?wt.% and 0.5?wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1?wt.% Al-added solder shows a microstructure with coarse ??-Sn dendrites. However, the addition of 0.5?wt.% Al has a great effect on suppressing the undercooling and refinement of the ??-Sn dendrites. In addition to coarse ??-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1?wt.% Al. On the other hand, the fine ??-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5?wt.% Al. Moreover, both 0.1?wt.% and 0.5?wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5?wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5?wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.  相似文献   
994.
This paper presents a numerical study of the effect of oscillation amplitude in oscillatory baffled column (OBC) using computational fluid dynamics. The numerical work was carried out for single phase liquid flow for an unsteady 3-D model using commercial software, Fluent (2006). This work was concentrated on the effect of oscillation amplitude. Three amplitudes of 5, 10 and 15 mm with constant frequency of 1 Hz are applied. Vortex and cycle average velocities at different points are analyzed. The studies show the maximum velocity for 5 mm, 10 mm and 15 mm in an OBC are 0.11 m/s, 0.25 m/s and 0.40 m/s respectively in the first cycle of oscillation. At a constant frequency, greater oscillation amplitude displaces the liquid to a further distance and builds a larger vortex. Vortex length was 1.5 times bigger when oscillation amplitude changes from 5 mm to 10 mm and 2 times when the amplitude is triple from 5 mm. The detailed validation is presented somewhere else; this research is focused on the effect of oscillation.  相似文献   
995.
996.
The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.  相似文献   
997.
Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. Practical Application The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food.  相似文献   
998.
This paper investigates the errors generated during the fabrication stage for producing complex anatomical replicas derived from computed tomography coupled with the 3D additive manufacturing methods. Based on this research work, it is shown that patient-specific model based on computed tomography data can be converted into computer numerically controlled G-code. It is shown that 3D extrusion-based additive manufacturing technology is accurate to ±3 % equating to ±200 μm surface deviations due to plastic shrinkage and distortion formed during the process. Polylactic acid plastic extrusion through a 200-μm bore nozzle has resulted in a model being produced with an Ra roughness of 35.5 μm. An evaluation on the errors generated during the fabrication process has been used to accurately produce an adult female mandible. Internal nerve channels and complex external bone geometry has been produced within the model. It is shown that using this process results in bone complexity and accuracy required for producing low-cost surgical grades models which is in comparison with traditional selective laser sintering manufacturing techniques. The surface accuracies suggest that the reproduction of anatomically complex representative structures by 3D plastic extrusion additive manufacturing which can be used for pre-surgical planning.  相似文献   
999.
1000.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号