全文获取类型
收费全文 | 1662篇 |
免费 | 133篇 |
国内免费 | 14篇 |
专业分类
电工技术 | 45篇 |
综合类 | 8篇 |
化学工业 | 427篇 |
金属工艺 | 74篇 |
机械仪表 | 63篇 |
建筑科学 | 83篇 |
矿业工程 | 4篇 |
能源动力 | 136篇 |
轻工业 | 129篇 |
水利工程 | 26篇 |
石油天然气 | 17篇 |
无线电 | 169篇 |
一般工业技术 | 246篇 |
冶金工业 | 76篇 |
原子能技术 | 22篇 |
自动化技术 | 284篇 |
出版年
2024年 | 7篇 |
2023年 | 36篇 |
2022年 | 55篇 |
2021年 | 98篇 |
2020年 | 80篇 |
2019年 | 104篇 |
2018年 | 144篇 |
2017年 | 131篇 |
2016年 | 151篇 |
2015年 | 86篇 |
2014年 | 111篇 |
2013年 | 183篇 |
2012年 | 121篇 |
2011年 | 94篇 |
2010年 | 79篇 |
2009年 | 57篇 |
2008年 | 45篇 |
2007年 | 34篇 |
2006年 | 19篇 |
2005年 | 9篇 |
2004年 | 10篇 |
2003年 | 13篇 |
2002年 | 13篇 |
2001年 | 11篇 |
2000年 | 8篇 |
1999年 | 4篇 |
1998年 | 14篇 |
1997年 | 3篇 |
1996年 | 6篇 |
1995年 | 13篇 |
1994年 | 6篇 |
1993年 | 4篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 6篇 |
1989年 | 6篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 6篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1979年 | 3篇 |
1975年 | 1篇 |
1973年 | 3篇 |
1970年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有1809条查询结果,搜索用时 15 毫秒
51.
Arida Jabbari Houri Mahdavi Mohsen Nikoorazm Arash Ghorbani-Choghamarani 《Journal of Porous Materials》2015,22(4):1111-1118
Oxovanadium(IV) Schiff base complex have been anchored onto the surface of purely siliceous MCM-41 and tested for its activity as catalyst for the oxidation of sulfides. This catalyst could alter this oxidation reaction extremity, exhibiting excellent yields with 100 % selectivity. The intercalation of the complex inside the silica matrix was supported by various characterization techniques like X-ray diffraction, differential thermogravimetric (TG-DTA), BET measurements, UV–Vis diffuse reflectance spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The stability of the catalyst during the course of the reaction was confirmed from its post catalytic FT-IR and XRD analysis. The catalyst could be reused five times without notable loss of its catalytic activity and efficiency which indicates that the metal-Schiff base moiety is intact and the coordination environments are not altered during the reaction. 相似文献
52.
Double diffusion convection in a cavity with a hot square obstacle inside is simulated using the lattice Boltzmann method. The results are presented for the Rayleigh numbers 104,105 and 106, the Lewis numbers 0.1, 2 and 10 and aspect ratio A (obstacle height/cavity height) of 0.2, 0.4 and 0.6 for a range of buoyancy number N=0 to?4 with the effect of opposing flow. The results indicate that for|N|b 1, the Nusselt and Sherwood numbers decrease as buoyancy ratio increases, while for|N|N 1, they increase with|N|. As the Lewis number increases, higher buoyan-cy ratio is required to overcome the thermal effects and the minimum value of the Nusselt and Sherwood num-bers occur at higher buoyancy ratios. The increase in the Rayleigh or Lewis number results in the formation of the multi-cell flow in the enclosure and the vortices wil vanish as|N|increases. 相似文献
53.
Kamyabi Mohammad Ali Moharramnezhad Mohsen 《Journal of Applied Electrochemistry》2021,51(10):1371-1385
Journal of Applied Electrochemistry - In this paper, a novel signal-off electrochemiluminescence sensor based on a ternary nanocomposite of ruthenium nanobeads/silver nanoparticles/graphene oxide... 相似文献
54.
Mohammad Sabet Masoud Salavati-Niasari Mohsen Ashjari Davood Ghanbari Mahnaz Dadkhah 《Journal of Inorganic and Organometallic Polymers and Materials》2012,22(5):1139-1145
CuInS2/CuS nanocomposite were synthesized by a copper complex, [bis(ethylenediamine)copper(ΙΙ)] sulfate. Eight sulfur sources were used for this experiment. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis spectroscopy, and room temperature photoluminescence spectroscopy. Thin film of nanocomposite powder was fabricated and its feature (Voc, Jsc and FF) was calculated by current–voltage (I–V) curve. 相似文献
55.
Xianzhong Chen Mohsen Heidarinejad Jinfeng Liu Panagiotis D. Christofides 《American Institute of Chemical Engineers》2012,58(6):1802-1811
The design of a composite control system for nonlinear singularly perturbed systems using model predictive control (MPC) is described. Specifically, a composite control system comprised of a “fast” MPC acting to regulate the fast dynamics and a “slow” MPC acting to regulate the slow dynamics is designed. The composite MPC system uses multirate sampling of the plant state measurements, i.e., fast sampling of the fast state variables is used in the fast MPC and slow‐sampling of the slow state variables is used in the slow MPC. Using singular perturbation theory, the stability and optimality of the closed‐loop nonlinear singularly perturbed system are analyzed. A chemical process example which exhibits two‐time‐scale behavior is used to demonstrate the structure and implementation of the proposed fast–slow MPC architecture in a practical setting. © 2012 American Institute of Chemical Engineers AIChE J, 58: 1802–1811, 2012 相似文献
56.
Mohsen Heidarinejad Jinfeng Liu Panagiotis D. Christofides 《American Institute of Chemical Engineers》2012,58(3):855-870
In this work, we develop model predictive control (MPC) designs, which are capable of optimizing closed‐loop performance with respect to general economic considerations for a broad class of nonlinear process systems. Specifically, in the proposed designs, the economic MPC optimizes a cost function, which is related directly to desired economic considerations and is not necessarily dependent on a steady‐state—unlike conventional MPC designs. First, we consider nonlinear systems with synchronous measurement sampling and uncertain variables. The proposed economic MPC is designed via Lyapunov‐based techniques and has two different operation modes. The first operation mode corresponds to the period in which the cost function should be optimized (e.g., normal production period); and in this operation mode, the MPC maintains the closed‐loop system state within a predefined stability region and optimizes the cost function to its maximum extent. The second operation mode corresponds to operation in which the system is driven by the economic MPC to an appropriate steady‐state. In this operation mode, suitable Lyapunov‐based constraints are incorporated in the economic MPC design to guarantee that the closed‐loop system state is always bounded in the predefined stability region and is ultimately bounded in a small region containing the origin. Subsequently, we extend the results to nonlinear systems subject to asynchronous and delayed measurements and uncertain variables. Under the assumptions that there exist an upper bound on the interval between two consecutive asynchronous measurements and an upper bound on the maximum measurement delay, an economic MPC design which takes explicitly into account asynchronous and delayed measurements and enforces closed‐loop stability is proposed. All the proposed economic MPC designs are illustrated through a chemical process example and their performance and robustness are evaluated through simulations. © 2011 American Institute of Chemical Engineers AIChE J, 2012 相似文献
57.
Sarah Pourjafar Ahmad Rahimpour Mohsen Jahanshahi 《Journal of Industrial and Engineering Chemistry》2012,18(4):1398-1405
Novel polyethersulfone (PES)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) composite nanofiltration membranes were prepared by dip-coating of PES membrane in PVA and TiO2 nanoparticles aqueous solution. Glutaraldehyde (GA) was used as a cross-linker for the composite polymer membrane in order to enhance the chemical, thermal as well as mechanical stabilities. TiO2 nanoparticles with different concentrations (0, 0.05, 0.1, 0.5 wt.%) were coated on the surface of PVA/PES composite membrane. The morphological study was investigated by atomic force microscopy (AFM), scanning surface microscopy (SEM) and along with X-ray diffraction (XRD). In addition, the membranes performances, in terms of permeate flux, ion rejection and swelling factor were also investigated. It was found that the increase in TiO2 solution concentration can highly affect the surface morphology and filtration performance of coated membranes. The contact angle measurement and XRD studies indicated that the TiO2 nanoparticles successfully were coated on the surface of PVA/PES composite membranes. However, rougher surface was obtained for membranes by TiO2 coating. The filtration performance data showed that the 0.1 wt.% TiO2-modified membrane presents higher performance in terms of flux and NaCl salt rejection. Finally, TiO2 modified membranes demonstrated the lower degree of swelling. 相似文献
58.
Mohsen Soleimani Sheraz Khan David Mendenhall Willie Lau Mitchell A. Winnik 《Polymer》2012,53(13):2652-2663
We describe fluorescence resonance energy transfer (FRET) studies of film formation by a new type of two-component latex particles. These particles consist of a miscible blend of two components that have a similar composition but very different molecular weights. In our approach, we used sequential seeded emulsion polymerization to generate (in situ) a fraction of oligomer in poly(butyl acrylate-co-methyl methacrylate) P(BA-MMA) seed particles that contained a relatively high molecular weight (high-M) dye-labeled polymer. In this way we could systematically change the molecular weight distribution of polymer inside the particles. We varied the amount and the molecular weight of the oligomers. For latex films cast from these two-component particles, we studied the diffusion rate of the high molecular weight polymer by FRET. These measurements revealed that oligomers promoted diffusion rate during latex film formation (oligoplasticization). We analyzed our diffusion data in terms of the Fujita–Doolittle free-volume model and showed that higher molecular weight oligomers are less efficient as plasticizers. In separate experiments, oligomers with similar molecular weights as those in the two-component particles were introduced via latex blending. We compared oligoplasticization in latex blends films with that in the two-component particles films. Finally, we investigated the rheological behavior of the two-component polymers with compositions adjusted to have a common Tg (2 °C). The higher the molecular weight of the oligomer, the more that had to be added to achieve Tg = 2 °C. All of the oligomers were much shorter than the entanglement length and act as diluents of the entanglements in the high-M polymer. We found that incorporating larger amounts of oligomers with a higher molecular weight resulted in a more pronounced drop in polymer viscosity, associated with the decrease in the entanglement density. 相似文献
59.
SiO2 nanoparticles of a quantum size (15 nm or less) were prepared via sol–gel method using tetraethylorthosilicate as a precursor. SiO2 nanoparticles were characterized by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) analyses. Polyethersulfone/silica (PES/SiO2) crystal structure nanocomposite was prepared by in situ polymerization using silica nanoparticles as reinforcement filler. The polymerization reaction was done at 160°C in paraffin bath in the presence of diphenolic monomers. XRD and FESEM analyses were used to study the morphology of the synthesized nanocomposite. The purity and thermal property of the PES/SiO2 nanocomposite were studied by energy dispersion of X‐ray analysis and differential scanning calorimetry, respectively. The effect of silica particles on the hydrophilicity of PES/SiO2 nanocomposite was also investigated. It was showed that the PES/SiO2 nanocomposite had a higher swelling degree when compared with the pure PES. The synthesized PES/SiO2 powder was used to remove Cu(II) ions from its aqueous solution. The effect of experimental conditions such as pH, shaking time, and sorbent mass on adsorption capacity of PES/SiO2 nanocomposite were investigated. It was found that incorporation of a low amount of silica (2 wt%) into the polymer matrix caused the increase of the Cu(II) ions adsorption capacity of PES. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
60.
The purpose of this paper is to provide a deeper understanding of the wear behavior of the sol–gel coated B4C particulate reinforced A356 matrix composites. A typical microstructure of the composite consists of relatively large primary phase globules which are surrounded by B4C particles. In fact the globules themselves are B4C particles free and consequently the sample is not homogeneous on a scale smaller than the globule size. The wear sliding test disclosed that the wear rate of the coated B4C reinforced composites is less than that of the unreinforced alloy and decreases with increasing volume fraction of B4C particulates. As the hardness of the composites is higher, this reduces the cutting efficiency of the abrasives and consequently the abrasion wear loss. Once the particles fracture or loosen from the matrix alloy, they can be removed easily from the matrix, contributing to the material loss. Two kinds of debris present irregular-shaped flake, which has withstood a large of plastic deformation and then pull off from the surface. During the sliding wear, Iron is transferred to the surface of the composites from the steel counterface forming the iron-rich layer on the contact surfaces which increases with increasing the B4C content and is substantially harder than the bulk material largely because it contains a fine mixture of Fe phase, Al and B4C. 相似文献