首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   16篇
电工技术   12篇
化学工业   66篇
金属工艺   1篇
机械仪表   1篇
建筑科学   7篇
能源动力   6篇
轻工业   5篇
水利工程   2篇
石油天然气   3篇
无线电   22篇
一般工业技术   24篇
冶金工业   6篇
原子能技术   1篇
自动化技术   11篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   12篇
  2013年   17篇
  2012年   12篇
  2011年   15篇
  2010年   7篇
  2009年   11篇
  2008年   12篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
41.
Multimedia Tools and Applications - Quality of Experience (QoE) measures the overall quality of a service from users’ point of view by considering several system, human, and contextual...  相似文献   
42.
In this study, the effects of two types of biological materials, i.e. natural bird droppings and pancreatin, on properties of an automotive acrylic melamine clear coat were studied. In addition, two different testing approaches including pre-aging and post-aging were utilized to investigate the biological resistance. To this end, effects of these biological materials on clear coat surface properties and appearance were investigated by different techniques including digital camera, SEM, AFM, optical microscopy and a gloss meter. In addition the mechanical properties of clear coats were evaluated by micro Vickers measurement and DMTA analysis. For further investigation FTIR analysis was utilized to have a more understanding of the failure mechanism.Results showed that the biological materials have an extremely vital effect on the appearance of the coatings. Decreasing of tg and hardness of the films made by pancreatin and bird droppings were observed and were attributed to the chemical alterations as proved by FTIR analysis. It was also found that the biological degradation occurred on the samples experienced the post-aged testing method was more severe than the samples exposed to pre-aged testing. On the other hands, although bird droppings and pancreatin revealed a same failure mechanism, the effect of the former was more severe. In addition, it has been shown that the enzymatic structure of biological materials is responsible for the catalyzing the hydrolytic degradation of clear coat at neutral pH. Therefore, the biological degradation mechanism may be regarded as an enzymatically induced hydrolytic cleavage.  相似文献   
43.
This paper examines the electrostatic force on a microdroplet transported via electrowetting on dielectric (EWOD). In contrast with previous publications, this article details the force distribution on the advancing and receding fluid faces, in addition to presenting simple algebraic formulae for the net force in terms of system parameters. Dependence of the force distribution and its integral on system geometry, droplet location, and material properties is described. The consequences of these theoretically and numerically obtained results for design and fabrication of EWOD devices are considered.  相似文献   
44.
Most of the strategies yet implemented to optimal fuel loading pattern design in nuclear power reactors, are based on maximizing the core effective multiplication factor (Keff) to extract maximum energy and lowering the local power peaking factor (Pq) from a predetermined value. However, a new optimization criterion could be of interest, aiming at maximum burn-up of the plutonium content in fuel assemblies, i.e., minimization of remaining plutonium in spent fuel at the end of cycle (EOC). In this research, we developed a new strategy for optimal fuel core loading pattern of a VVER-1000 reactor, based on multi-objective optimization: lowering the Pq, maximization of the Keff and minimization of remaining plutonium (Pu) in fuels at EOC. This strategy has been implemented considering exact calculations of fuel burn-up during the equilibrium cycle using WIMSD and CITATION calculation codes. We used the genetic algorithm to find the optimum fuel loading pattern. Simulation results show that this strategy can reduce the remaining Pu of the fuels at EOC while considering limitations on core power peaking and multiplication factor.  相似文献   
45.
A meshless method based on a global collocation with radial basis functions for the numerical solution of the modified Korteweg–de Vries (mKdV) equation is presented. Standard types of radial basis functions are applied in the method of collocation. The stability analysis of the method is dealt with using a linearized stability analysis. The method?s accuracy and efficiency are examined by the simulation of a single soliton and interaction of two solitary waves. The four invariants of the motion are evaluated to determine the conservation properties of the method. A comparison with some earlier reported results is also carried out.  相似文献   
46.
This paper offers theoretical results for fully developed slip-flow forced convection through a microchannel of semicircular cross-section. Numerical results are also presented to study the developing region. Velocity slip and temperature jump boundary conditions are applied at the uniformly heated walls. The results from the two different sources are cross validated and those pertaining to the limiting case of no-slip flow are found to be in good agreement with those available in the literature.  相似文献   
47.
This research developed a differential kinetic model to predict the partial degradation of natural organic matter (NOM) during ultraviolet plus hydrogen peroxide (UV/H2O2) advanced oxidation treatment. The absorbance of 254?nm UV, representing chromophoric NOM (CNOM) was used as a surrogate to track the degradation of NOM. To obtain reaction rate constants not available in the literature, i.e., reactions between the hydroxyl radical (?OH) and NOM, experiments were conducted with “synthetic” water, using isolated Suwannee River NOM, and parameter estimation was applied to obtain the unknown model parameters. The reaction rate constant for the reaction between ?OH and total organic carbon (TOC), k?OH,TOC, was estimated at 1.14(±0.10)×104??L?mg-1?s-1, and the reaction rate constant between ?OH and CNOM, k?OH,CNOM, was estimated at 3.04(±0.33)×104??L?mol-1?s-1. The model was evaluated on two natural waters to predict the degradation of CNOM and H2O2 during UV/H2O2 treatment. Model predictions of CNOM degradation agreed well with the experimental results for UV/H2O2 treatment of the natural waters, with errors up to 6%. For the natural water with additional alkalinity, the model also predicted well the slower degradation of CNOM during UV/H2O2 treatment, owing to scavenging of ?OH by carbonate species. The model, however, underpredicted the degradation of H2O2, suggesting that, when NOM is present, mechanisms besides the photolysis of H2O2 contribute appreciably to H2O2 degradation.  相似文献   
48.
The use of vacuum-UV (VUV) radiation to degrade natural organic matter (NOM) and the main variables affecting the efficiency of this process were investigated using an annular photoreactor. After 180 min of irradiation with VUV, the total organic carbon (TOC) decreased from 4.95 ppm to 0.3 ppm. Also, decadic absorption coefficients of the water at 185 nm and 254 nm decreased from 3.2 cm(-1) to 2.85 cm(-1), and 0.225 cm(-1) to 0 cm(-1), respectively. The reactor operation was kinetically controlled for Reynolds numbers greater than 600, changes of pH between 5 and 9 had little effect, and increases in alkalinity decreased the process efficacy. Additionally, H(2)O(2)/VUV and VUV processes were compared to H(2)O(2)/UV and UV processes, where the formers showed greater effectiveness with complete mineralization of NOM as opposed to partial oxidation with H(2)O(2)/UV, and no mineralization with UV alone. Modeling and analysis of the photon flux and absorption in the reactor showed that 99% of the 185 nm radiation was absorbed by the water in the reactor. In comparison, only 48% of the 254 nm radiation was absorbed by the water. The overall quantum efficiency of the mineralization for VUV was 0.10 for 50% TOC reduction.  相似文献   
49.
Network coding (NC) is a technique that allows intermediate nodes to combine the received packets from multiple links and forwarded to subsequent nodes. Compared with pure relaying, using NC in a wireless network, one can potentially improve the network throughput, but it increases the complexity of resource allocations as the quality of one transmission is often affected by the transmission conditions of multiple links. In this paper, we consider an ad hoc network, where all the links have bidirectional communications, and a relay node forwards traffic between the source and the destination nodes using NC. All transmissions share the same frequency channel, and simultaneous transmissions cause interference to each other. We consider both digital NC and analog NC strategies, referred to as DNC and ANC, respectively, and schedule transmission time and power of the nodes in order to maximize the overall network throughput. For DNC, an optimum scheduling is formulated and solved by assuming that a central controller is available to collect all the link gain information and make the scheduling decisions. Distributed scheduling schemes are proposed for networks using DNC and ANC. Our results indicate that the proposed scheduling scheme for DNC achieves higher throughput than pure relaying, and the scheduling scheme for ANC can achieve higher throughput than both DNC and pure relaying under certain conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号