首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   57篇
  国内免费   6篇
电工技术   17篇
化学工业   227篇
金属工艺   19篇
机械仪表   34篇
建筑科学   30篇
矿业工程   3篇
能源动力   43篇
轻工业   39篇
水利工程   25篇
石油天然气   11篇
无线电   48篇
一般工业技术   124篇
冶金工业   15篇
原子能技术   6篇
自动化技术   118篇
  2024年   2篇
  2023年   7篇
  2022年   20篇
  2021年   49篇
  2020年   50篇
  2019年   62篇
  2018年   80篇
  2017年   74篇
  2016年   57篇
  2015年   31篇
  2014年   37篇
  2013年   79篇
  2012年   45篇
  2011年   56篇
  2010年   35篇
  2009年   25篇
  2008年   8篇
  2007年   14篇
  2006年   9篇
  2005年   9篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有759条查询结果,搜索用时 203 毫秒
731.
Intestinal parasitic infection (IPI) is the main cause of gastrointestinal complications in hemodialysis patients due to their impaired immune systems. We conducted a systematic review and meta‐analysis to evaluate the prevalence and odds ratio (OR) of IPIs in this population. Relevant eligible studies were identified by searching the PubMed, Science Direct, Scopus, Web of Science, and Google scholar databases up to January 30, 2019. A random‐effects meta‐analysis model was used to estimate the pooled prevalence, OR, and 95% confidence intervals (CI). Twenty‐two studies, from Turkey, Iran, Brazil, Egypt, Saudi Arabia, Pakistan, and Malaysia met eligibility criteria for analysis, and included 11 using a case–control design (980 patients and 893 controls) and 11 studies using a cross‐sectional design (a total of 1455 participants). Cross‐sectional studies suggested that the pooled prevalence of IPIs in hemodialysis patients was 24% (95% CI, 14–36%; 307/1455). In studies using a case–control design, the pooled prevalence of IPIs in hemodialysis patients (30%, 330/980) was found to be significantly higher than controls (10%, 115/893) (OR, 3.40; 95%CI, 2.37–4.87). With respect to the parasites, Cryptosporidium spp. (OR, 4.49; 95%CI, 2.64–7.64) and Blastocystis sp. (OR, 4.03; 95%CI, 1.20–13.51) were significantly higher in hemodialysis patients compared to the controls. The current study revealed a high prevalence of IPIs in hemodialysis patients from countries in which the baseline prevalence of parasitic infection is high. We recommend that periodic screenings for IPIs in such countries should be incorporated into the routine clinical care of hemodialysis patients.  相似文献   
732.
Group/team decision-making is an integral part of almost all failure mode and effects analysis (FMEA) projects. A dysfunctional aspect of this decision-making fashion in fuzzy FMEA is that group/team members’ designs for membership functions and IF-THEN rules may be overshadowed by a member’s design. This problem is caused by groupthink, a pitfall known by the Organisational Behaviour science. This study aims to develop a fuzzy FMEA approach which is robust to the problem. We applied the Taguchi’s robust parameter design and investigated the effects of various control parameters namely Defuzzification, Aggregation, And and Implication operators for the fuzzy inference system (FIS). Our experiments illustrate that the control parameters, in the above-mentioned order, have the most effect on the signal-to-noise ratio (SNR). These factors’ optimal setting consists of the Centroid, Sum, Minimum and Minimum levels, respectively.  相似文献   
733.
In this work, a novel water dispersible polyurethane (WDPU) was synthesized from the reaction of hydroxyl-terminated polybutadiene (HTPB), 2,2 bis(hydroxymethyl) propionic acid (DMPA), and 1,5-naphthalene diisocyanate (NDI) and its magnetic nanocomposites were prepared by incorporation of modified Fe3O4 by 3-aminopropyltriethoxysilane (Fe3O4@APTS) nanoparticles (0.5, 1.5, and 3 wt%) via in situ polymerization method. Use of NDI as a high melting point diisocyanate by having the rigid naphthalene structure imparts physical strength as well as thermal stability to the resulted polyurethane. The synthesized WDPU based on NDI was characterized by using Fourier transform infrared spectroscopy (FTIR) technique. In addition, the morphology, mechanical, and magnetic features of the prepared polyurethane nanocomposites were investigated by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), magnetic force microscopy (MFM), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMTA), and vibrating sample magnetometer (VSM) methods, respectively. Data from DLS experiment showed that the average particles size of the WDPU nanocomposites increased by increasing the nanoparticle contents in comparison with bare WDPU. AFM and MFM analyses indicated that the magnetic nanoparticles (MNPs) were well dispersed in the polyurethane matrices via the formation of covalent bonding between the functionalized magnetic nanoparticles and polymer chains. TGA results demonstrated that adding MNPs increased the temperature of the thermal degradation of the polyurethane nanocomposite. VSM analysis showed that the super paramagnetic behavior of the prepared nanocomposites depended on the Fe3O4@APTS nanoparticle content, as well.  相似文献   
734.
Modified montmorillonite/polypropylene nanocomposites (NCs) are increasingly used in industrial applications such as subsea pipelines because hexadecyltrimethyl ammonium montmorillonite (HDTMA+-Mt) enhances thermomechanical and barrier properties of the amorphous polymer. Two coupled physics of moisture adsorption and thermal loading are investigated. Molecular dynamics simulates HDTMA+-Mt polymer NC using three force fields including polymer consistent force field and condensed-phase optimized molecular potentials, and embedded-atom method. Mechanical properties and self-diffusion coefficient are investigated at temperature levels of 100 and 298 K, and water content of 0.021 and 0.133 g/g. These properties are evaluated at 1.0 atm pressure for four different volume fractions (vol%) of the HDTMA+-Mt. The modeling procedure is verified by obtaining the glass transition temperature (Tg) of the NC by scanning the temperature from 200 K (glassy state) up to 325 K (rubbery state). It is observed that the Tg is very close to the experimental value available in the literature. The result of the modeling shows that the increase of clay content of the NC decreases the self-diffusion coefficient of the material. It is seen that the clay nanoparticle can significantly hinder the degradation of mechanical properties of the NC even when both temperature and water content increase.  相似文献   
735.
736.
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.  相似文献   
737.
For bit-patterned media, media with low remanent magnetization (M(r)) and high M(r) regions are needed for storing information, which is usually achieved by lithographically defining magnetic and non-magnetic regions. In this work, we have investigated the use of ion beam modification of media surface to define the low and high M(r) states using a medium that is at a low M(r) state to start with. The low M(r) state is achieved by the use of synthetic antiferromagnetic coupling obtained in Co-alloy/Ru/Co-alloy trilayer structured film. Local ion beam modification at 30 keV energy using Ga+ ions was used to create high M(r) regions. AFM and MFM observations indicated that patterned regions of low and high M(r) can be observed with ion beam irradiation. This technique is a potential method to achieve patterned media without the need of planarization techniques.  相似文献   
738.
The characteristics of polyaniline/graphite composites (PANi/G) have been studied in aqueous electrolyte. PANi/G films with different graphite particle sizes were deposited on a platinum electrode by means of cyclic voltammetry. The film was employed as a positive electrode (cathode) for a Zn-PANi/G secondary battery containing 1.0 M ZnCl2 and 0.5 M NH4Cl electrolyte at pH 4.0. The cells were charged and discharged under a constant current of 0.6 mA cm−2. The assembled battery showed an open-circuit voltage (OCV) of 1.55 V. All the batteries were discharge to a cut off voltage of 0.7 V. Maximum discharge capacity of the Zn-PANi/G battery was 142.4 Ah kg−1 with a columbic efficiency of 97–100% over at least 200 cycles. The mid-point voltage (MPV) and specific energy were 1.14 V and 162.3 Wh kg−1, respectively. The constructed battery showed a good recycleability. The structure of these polymer films was characterized by FTIR and UV–vis spectroscopies. Electrochemical impedance spectroscopy (EIS) was used as a powerful tool for investigation of charge transfer resistance in cathode material. The scanning electron microscopy (SEM) was employed as a morphology indicator of the cathodes.  相似文献   
739.
Cyanobacteria, such as Synechocystis, have recently become attractive hosts for sustainable production of biofuels and bio-fixation of CO2 due to their genetic tractability and relatively fast growth. Cultivation of cyanobacteria requires shear stress, which is generated by mixing and air bubbling. In the present work, the impact of shear stress caused by stirring and air bubbling on the growth and pigment production of Synechocystis sp. PCC 6803 is investigated. For this purpose, agitated and airlift bubble column photobioreactors were used. The results showed that the growth and yield production were improved by mixing the culture system. However, there is a limit to this improvement: In the case of air bubbling, increasing shear stress (by rising air bubbling flow rate) to more than 185 mPa did not show any significant growth enhancement, while increasing the shear stress from 40 to 185 mPa improved the yield production up to 85%. At the optimal stirring rate, the yield production in the stirred photobioreactors increased by about 60% as compared to that of unstirred culture. The measurements of chlorophylla and carotenoid showed a strong correlation between biomass production and total pigment content. The highest level of cellular pigment (pigment per cell) was detected at the early stages of culture growth when cells were preparing for the rapid exponential growth phase.  相似文献   
740.
A semi-analytical fully discretized finite strip method is developed to investigate the pre-buckling and local buckling of viscoelastic plates with different boundary conditions subjected to time-dependent loading. The mechanical properties of the material are considered to be linear viscoelastic by expressing the relaxation modulus in terms of Prony series. The fully discretized finite strip equations are developed using a two-point recurrence formulation, which leads to a computationally superior formulation. Time history of maximum deflection of plates with different end conditions is calculated. The effects of thickness, length of plate, and transverse loading on critical buckling load are also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号