In this article, we present a sol-gel method to synthesize hybrid nanocomposite films of Zinc oxide (ZnO)/methylcellulose (MC) on microscope glass slides. The zinc/MC solutions were prepared, using different weight ratios of zinc acetate dihydrate to MC, in the presence of acetic acid. Fourier transform infrared spectroscopy (FTIR) investigation of the Zn sol/MC mixture showed coordinating interaction between zinc ions and MC. Thermal gravimetry analysis (TGA) results showed rapid decomposition of organic compounds in the composites at the temperature range of 200-450 degrees C. The UV-Vis spectroscopy was also utilized to identify ZnO nanoparticles in the MC matrix. The generation of ZnO nanoparticles in the MC matrix was then observed to proceed in situ through the annealing of the gel phase at 200 degrees C. Nanocrystalline films of ZnO/MC were subsequently obtained by the calcinations of ZnO/MC nanocomposites at 550 degrees C. The nanocomposite films were transparent in the visible light and showed a higher energy absorption edge compared with the bulk ZnO. Nanocrystallite sizes of ZnO particles were estimated from scanning electron microscopy (SEM) and the X-ray diffraction (XRD) investigations. 相似文献
In this review, the unique properties of intrinsically conducting polymer (ICP) in biomedical engineering fields are summarized. Polythiophene and its valuable derivatives are known as potent materials that can broadly be applied in biosensors, DNA, and gene delivery applications. Moreover, this material plays a basic role in curing and promoting anti-HIV drugs. Some of the thiophene’s derivatives were chosen for different experiments and investigations to study their behavior and effects while binding with different materials and establishing new compounds. Many methods were considered for electrode coating and the conversion of thiophene to different monomers to improve their functions and to use them for a new generation of novel medical usages. It is believed that polythiophenes and their derivatives can be used in the future as a substitute for many old-fashioned ways of creating chemical biosensors polymeric materials and also drugs with lower side effects yet having a more effective response. It can be noted that syncing biochemistry with biomedical engineering will lead to a new generation of science, especially one that involves high-efficiency polymers. Therefore, since polythiophene can be customized with many derivatives, some of the novel combinations are covered in this review. 相似文献
This paper proposes a vibration-based fault-diagnosis method for mechanical parts. This method, after algorithm development, only requires a single inexpensive test to inspect the part which could take as short as half a second. The algorithm is developed in three major stages, (i) exciting specimens without or with known faults using a controlled force and recording acceleration of a single point for a short time (ii) finding a signature for each faulty specimen, using Fourier transform and statistical analysis. (iii) Developing a multi-layer perceptron, as a mathematical model, using the results of stage (ii). The elements of a part signature are the inputs to the model. The location (and possibly size and shape factor) of the fault is model output. Stage (i) can be performed experimentally or alternatively with a validated FEM, one experiment or simulation per specimen. The proposed technique was examined to locate (isolate) a fault on an automobile cylinder head. The presented accuracy is considerable, and the data collected at fairly low frequency range (below 1200 Hz) were found to be sufficient for this technique. In the case study of this paper, possible fault locations are on a line; as a result, fault location has one dimension. It is shown that the technique can be extended to higher dimensions. 相似文献
This paper describes a study of three-dimensional free vibration analysis of thick circular and annular isotropic and functionally graded (FG) plates with variable thickness along the radial direction, resting on Pasternak foundation. The formulation is based on the linear, small strain and exact elasticity theory. Plates with different boundary conditions are considered and the material properties of the FG plate are assumed to vary continuously through the thickness according to power law. The kinematic and the potential energy of the plate-foundation system are formulated and the polynomial-Ritz method is used to solve the eigenvalue problem. Convergence and comparison studies are done to demonstrate the correctness and accuracy of the present method. With respect to geometric parameters, elastic coefficients of foundation and different boundary conditions some new results are reported which may be used as benchmark solutions for future researches. 相似文献
The solution of an inverse, conduction-radiation problem in a two-dimensional rectangle is analyzed to determine the temperature-dependent emissivity at the boundary. The medium is gray, absorbing, emitting and isotropically scattering. The bounding surfaces are assumed to be opaque and diffuse. The inverse problem is solved by minimizing the performance function, which is expressed by the sum of square residuals between estimated and exact heat fluxes, using a combined method of genetic algorithm and conjugate gradient. The emissivity is assumed to be represented as a function of boundary temperature with unknown variables. Therefore, the inverse problem is treated by the estimation of these variables. Finally, four examples are presented to show the accuracy of the algorithm. The effect of the measurement errors on the accuracy of the inverse analysis is also investigated. Results show the algorithm can estimate the unknown emissivity when the measurement errors are neglected. Also it is found that increasing the measurement error decreases the accuracy of estimation of temperature-dependent emissivity. 相似文献
Journal of Mechanical Science and Technology - In this paper, a new balancing approach called “zero-power balancing” (ZPB) method is presented for a two-link robot manipulator (TLRM)... 相似文献
The present paper is aimed to investigate the behavior of Natural Rubber Bearing incorporated with steel ring damper (NRB-SRD). These types of dampers are integrated of several steel rings which are considered with two configurations namely, continual steel ring damper and separate steel ring damper and are inserted between top and bottom plates. The performance characteristics of the system such as effective horizontal stiffness, energy dissipation, equivalent viscous damping and residual deformation are calculated and then compared with the results of high damping rubber bearings and also shape memory alloy (SMA)-lead core rubber bearing (SMA-LRB). The results show that the energy dissipation in steel rings are mainly based on plastic deformation due to flexural behavior of the rings. NRB-SRD shows better performance in energy dissipation comparing to SMA-LRB and HDRB. These additional dampers show higher stability and energy dissipation in low shear strains due to developing of link between structure and substructure having desirable initial stiffness under weak earthquakes and wind loads and also in higher shear strains due to creation of higher energy dissipation, stability and secondary stiffening.
In recent years, as a result of climate change as well as rainfall reduction in arid and semi‐arid regions, modelling qualitative and quantitative parameters belonging to aquifers has become crucially important. In Iran, as aquifers are treated as the most commonly used drinking water resources, modelling their qualitative and quantitative parameters is enormously important. In this paper, for the first time, values of salinity, total dissolved solids (TDS), groundwater level (GWL) and electrical conductivity (EC) of the Arak Plain, located in Markazi Province, Iran, are simulated by means of four modern artificial intelligence models including extreme learning machine (ELM), wavelet extreme learning machine (WELM), online sequential extreme learning machine (OSELM) and wavelet online sequential extreme learning machine (WOSELM) as well as the MODFLOW software for a 15‐year period monthly. To develop the hybrid artificial intelligence models, the wavelet is employed. First, the effective lags in estimating the qualitative and quantitative parameters of the groundwater are identified using the autocorrelation function (ACF) and the partial autocorrelation function (PACF) analysis. After that, four different models are developed by the selected input combinations and also the ACF and the PACF in the form of different lags for each of ELM, WAELM, OSELM and WOSELM methods. Then, the superior models in simulating the groundwater qualitative and qualitative parameters are detected by conducting a sensitivity analysis. To forecast the electrical conductivity (EC) by the best WOSELM model, the values of the Nash–Sutcliffe efficiency coefficient (NSC), Mean Absolute Error (MAE) and the scatter index (SI) are obtained to be 0.991, 18.005 and 4.28E‐03, respectively. In addition, the most effective lags in estimating these parameters are introduced. Subsequently, the results found by the MODFLOW model are compared with those of the artificial intelligence models and it is concluded that the latter are more accurate. For instance, the scatter index and Nash–Sutcliffe efficiency coefficient values calculated by WOSELM for TDS, respectively, are 5.34E‐03 and 0.991. Finally, an uncertainty analysis is conducted to evaluate the performance of different numerical models. For example, MODFLOW has an underestimated performance in simulating the salinity parameter. 相似文献
Bulletin of Engineering Geology and the Environment - This work aims to identify fracture pattern and crack growth mode in brittle rocks and solids under induced tensile stresses, and further... 相似文献
TiO2—methylcellulose (MC) nanocomposite films processed by the sol-gel technique were studied for phocatalytic applications. Precalcined
TiO2 nanopowder was mixed with a sol and heat treated. The sol suspension was prepared by first adding titanium tetra isopropoxide
(Ti(OPr)4 or TTP) to a mixture of ethanol and HCl (molar ratio TTP:HCl:EtOH:H2O = 1:1.1:10:10) and then adding a 2 wt.% solution of methylcellulose (MC). The TiO2 nanopowder was dispersed in the sol and the mixture was deposited on a microscope glass slide by spin coating. Problems of
film inhomogeneity and defects which caused peeling and cracking during calcinations, because of film shrinkage, were overcome
by using MC as a dispersant. Effect of MC on the structure evaluation, crystallization behavior and mechanical integrity with
thermal treatment up to 500 °C are followed by SEM, XRD and scratch test. XRD Scanning electron microscopy (SEM) showed that
the composite films with MC have much rougher surface than films made without MC. Composite films heat treated at approximately
500 °C have the greatest hardness values. For the composite thick film, the minimum load which caused the complete coating
removal was 200 g/mm2, an indication of a strong bond to the substrate. Photocatalytic activities of the composite film were evaluated through
the degradation of a model pollutant, the textile dye, Light Yellow X6G (C.I. Reactive Yellow 2) and were compared with the
activity of (i) a similar composite film without MC, and (ii) a TiO2 nanopowder. The good mechanical integrity make this composite film an interesting candidate for practical catalytic applications. 相似文献