首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1951篇
  免费   80篇
  国内免费   3篇
电工技术   18篇
综合类   3篇
化学工业   417篇
金属工艺   17篇
机械仪表   37篇
建筑科学   85篇
矿业工程   4篇
能源动力   130篇
轻工业   253篇
水利工程   27篇
石油天然气   5篇
无线电   109篇
一般工业技术   332篇
冶金工业   224篇
原子能技术   14篇
自动化技术   359篇
  2024年   2篇
  2023年   17篇
  2022年   27篇
  2021年   46篇
  2020年   34篇
  2019年   39篇
  2018年   48篇
  2017年   48篇
  2016年   51篇
  2015年   45篇
  2014年   84篇
  2013年   151篇
  2012年   110篇
  2011年   139篇
  2010年   111篇
  2009年   97篇
  2008年   114篇
  2007年   112篇
  2006年   90篇
  2005年   55篇
  2004年   81篇
  2003年   60篇
  2002年   49篇
  2001年   37篇
  2000年   38篇
  1999年   31篇
  1998年   90篇
  1997年   46篇
  1996年   26篇
  1995年   29篇
  1994年   17篇
  1993年   29篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   2篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   12篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1972年   1篇
排序方式: 共有2034条查询结果,搜索用时 0 毫秒
51.
Typical features of liquid–solid reactions were reviewed: reaction kinetics, mass transfer effects and particle morphology. It was concluded that classical liquid–solid models based on ideal, non-porous geometries (sphere, infinite cylinder, slab) cannot satisfactorily describe real reactive solid particles with various surface defects, such as cracks, craters and limited porosity. Typically a too low reaction order for the reactive solid is predicted by the classical models. The surface morphology can be revealed by electron microscopy, which gives inspiration to develop new mathematical models for reactive solids.  相似文献   
52.
A process integration approach has been applied to integrate a traditional steelmaking plant with a polygeneration system to increase energy efficiency and suppress carbon dioxide emissions from the system. Using short‐cut models and empirical equations for different units and available technologies for gas separation, methane gasification, and methanol synthesis, a mixed integer nonlinear model is applied to find the optimal design of the polygeneration plant and operational conditions of the system. Due to the complexity of the blast furnace (BF) operation, a surrogate model technique is chosen based on an existing BF model. The results show that from an economic perspective, the pressure swing adsorption process with gas‐phase methanol unit is preferred. The results demonstrate that integration of conventional steelmaking with a polygeneration system could decrease the specific emissions by more than 20 percent. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3659–3670, 2013  相似文献   
53.
The primary aim of this article is to present a simulation model for a bark dryer integrated into a combined heat and power plant. The same model can be used for the model-based control of the dryer. The secondary aim is to evaluate how useful the control is from an economic point of view. Results show that the final fuel moisture content can be stabilised by controlling the drying temperature(s). On the other hand, the deviation in final bark moisture decreases even when the dryer has no control at all. Net incomes resulting from drying increase in most cases compared to dryers without control. The need for control cannot be justified on economic grounds.  相似文献   
54.
A mathematical model for through drying of paper at constant pressure drop was developed. The model is based on physical properties; hence, basis weight, pressure drop, drying air temperature, pore size distribution, initial gas fraction, and tortuosity are important input parameters to the model. The model was solved for different combinations of the variables basis weight, drying air temperature, and pressure drop corresponding to industrial conditions and the results were compared with data from bench-scale experiments. The simulations show that the drying rate curve is very sensitive to the air flow rate and that correctly modeling the correlation between pressure drop and air flow rate is the most important factor for a successful model for through drying. The model was tuned by adjusting the parameters initial gas fraction and tortuosity in order to give the best possible fit to experimental data. For a given basis weight and pressure drop, different drying air temperatures resulted in relatively constant values of the fitted parameters. This means that the model can well predict the effects of changes in drying air temperature based on a tuning of the model performed at the same basis weight and pressure drop. However, for a given basis weight, an increase in pressure drop yielded fitted parameters that were somewhat different; i.e., a lower initial gas fraction and a higher tortuosity, a change that increases the resistance to air flow. This implies that the correlation between pressure drop and air flow rate in the model does not quite capture the nonlinear relationship shown by the experiments.  相似文献   
55.
This study examines in detail the influence of low‐temperature plasma and biopolymer chitosan treatments on wool dyeability. Wool knitted fabrics were treated and characterized by whiteness and shrink‐resistance measurements. Surface modification was assessed by contact‐angle measurements of human hair fibers, which were used as a model to study the wetting properties of the treated wool knitted fabrics. The dyeing behavior was assessed from the diffusion mechanism point of view. The dyeing kinetics were measured at two different pHs (4.2 and 6.5) and three different temperatures (60, 85, and 100°C) to gain information about the contribution of the surface modification treatment to the dyeing mechanism. The exhaustion and reflectance data were compared, and the apparent diffusion coefficients were calculated. On the basis of the obtained results, a model for the dyeing mechanism of the chitosan treated wool was proposed. When treated with chitosan, the polymer sheath spread on the surface of the fibers acted as a predominant dyeing site in very short dyeing times, thus interacting with the dye and in later stages imparting the dye to the wool fiber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2204–2214, 2005  相似文献   
56.
Tuberculosis represents one of the ten most common courses of death worldwide and the emergence of multidrug-resistant M. tuberculosis makes the discovery of novel anti-tuberculosis active structures an urgent priority. Here, we show that (+)-floyocidin B representing the first example of a novel dihydroisoquinoline class of fungus-derived natural products, displays promising antitubercular hit properties. (+)-Floyocidin B was identified by activity-guided extract screening and its structure was unambiguously determined by total synthesis. The absolute configuration was deduced from a key synthesis intermediate by single crystal X-ray diffraction analysis. A hit series was generated by the isolation of further natural congeners and the synthesis of analogs of (+)-floyocidin B. Extensive biological and physicochemical profiling of this series revealed first structure-activity relationships and set the basis for further optimization and development of this novel antitubercular scaffold.  相似文献   
57.
Braband H 《Chimia》2011,65(10):776-781
The development of technetium chemistry has been lagging behind that of its heavier congener rhenium, primarily because the inherent radioactivity of all Tc isotopes has limited the number of laboratories that can study the chemistry of this fascinating element. Although technetium is an artificial element, it is not rare. Significant amounts of the isotope (99)Tc are produced every day as a fission byproduct in nuclear power plants. Therefore, a fundamental understanding of the chemistry of (99)Tc is essential to avoid its release into the environment. In this article the chemistry of technetium at its highest oxidation state (+VII) is reviewed with a special focus on recent developments which make water-stable complexes of the general type [TcO(3)(tacn-R)](+) (tacn-R = 1,4,7-triazacyclononane or derivatives) accessible. Complexes containing the fac-{TcO(3)}(+) core display a unique reactivity. In analogy to [OsO(4)] and [RuO(4)], complexes containing the fac-{TcO(3)}(+) core undergo with alkenes metal-mediated, vicinal cis-dihydroxylation reactions (alkene-glycol interconversion) in water via a (3+2)-cycloaddition reaction. Therefore, water-stable fac-{(99m)TcO(3)}(+) complexes pave the way for a new labeling strategy for radiopharmaceutical applications, based on (3+2)-cycloaddition reactions. This new concept for the labeling of biomolecules with small [(99m)TcO(3)(tacn-R)](+)-type complexes by way of a (3+2)-cycloaddition with alkenes is discussed in detail. The herein reported developments in high-valent technetium chemistry create a new field of research with this artificial element. This demonstrates the potential of fundamental research to provide new impetus of innovation for the development of new methods for radiopharmaceutical applications.  相似文献   
58.
The depletion of fossil fuel-based resources and concerns for increasing emissions of CO2 call for new ways of producing environmentally-friendly substitutes for motor fuels and chemicals. Thermo-chemical conversion of biomass and waste using gasification is a strong candidate to meet these challenges. For efficient and cost-effective application of this technique, novel solutions for hot gas cleaning are needed. This review highlights some important areas for improvement of upgrading technologies for pressurised fluidised bed gasification systems using biomass as a fuel.  相似文献   
59.
Combustion of biomass for heat and power production is continuously growing in importance, because of incentives for replacing fossil energy resources with renewable ones. In biomass combustion, the moisture content of the fuel is an essential operation parameter, which often fluctuates for biomass fuels. Variation in moisture content complicates the operation of the furnaces and results in an uncertainty in the energy content of the fuel delivered to a plant. The fuel moisture-content in a furnace may be determined either by direct measurement on the entering fuel or by measuring the moisture and oxygen contents of the flue gases deriving the moisture content of the fuel. However, reliable methods of a motivated cost for the small to medium-scale furnaces are today not available. An exception is if the furnace is equipped with flue-gas condenser, which can be used to estimate the moisture content of the flue gases. A limitation of this method is, though, that not all furnaces have flue-gas condensers and that the measured signal has an inherent time delay.In this work, measurement of the relative humidity (RH) of the flue gases from a furnace is investigated as the central component in the on-line monitoring of the moisture content of the fuel in a furnace. The method was analysed with humid air in a laboratory environment and tested for accuracy and dynamical behaviour in two biomass-fired heat-production units, one circulating fluidised-bed boiler (CFB) and one grate furnace. The results show that the method, which is easy to calibrate on site, can be used to predict the moisture content of the biomass fuel in the grate furnace with very good precision (<4% error). Furthermore, the method detects variations in moisture content of the furnace flue gases due to changes in the moisture content of the combusted fuel within the order of seconds. Since the transport time of the flue gases from the furnace to the measurement position is of the same order of magnitude, the total time for detection of a change in the moisture content of the fuel is small enough for the signal to be used to control both the fuel feed and the combustion air in a grate furnace.  相似文献   
60.

Abstract  

A mesoporous-type catalytic support was synthesized through the modification of a smectite with polyvinyl alcohol (PVA) and microwaves. Texture and micro-morphology of the support was determined. Several techniques were employed in order to describe the chemical environment of active species on the surface. Ni0 particle sizes were dependent on the structural site of reducible species. High stable Ni-Ce catalysts (calcined at 800 °C) were evaluated in the CO2 reforming of methane reaction at 700 °C (WHSV = 96 L g−1 h−1, without dilution gas and pre-reduction). The catalysts have presented CH4 conversions between 40 and 65%, CO2 conversion between 35 and 65% and H2/CO ratios between 0.2 and 0.4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号