首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   65篇
  国内免费   9篇
电工技术   19篇
综合类   2篇
化学工业   234篇
金属工艺   26篇
机械仪表   38篇
建筑科学   34篇
矿业工程   3篇
能源动力   34篇
轻工业   51篇
水利工程   9篇
石油天然气   5篇
无线电   55篇
一般工业技术   137篇
冶金工业   29篇
原子能技术   12篇
自动化技术   171篇
  2024年   1篇
  2023年   10篇
  2022年   19篇
  2021年   45篇
  2020年   54篇
  2019年   52篇
  2018年   92篇
  2017年   49篇
  2016年   58篇
  2015年   41篇
  2014年   66篇
  2013年   86篇
  2012年   61篇
  2011年   69篇
  2010年   45篇
  2009年   28篇
  2008年   24篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有859条查询结果,搜索用时 0 毫秒
31.
The development of eco-friendly and nontoxic processes for the synthesis of nanoparticles is one of the most important discussed issues in nanotechnology science. This study reports the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of leaf, stem, and root of Avicennia marina, the native and dominant mangrove plant in southern Iran. Among the different plant parts, the extract of leaves yielded the maximum synthesis of AgNPs. Synthesized AgNPs were investigated using UV–visible spectrophotometry, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Absorption spectrum in 420?nm confirmed the synthesis of AgNPs. TEM images revealed that the synthesized AgNPs had the same spherical morphology with a size range between 0 and 75?nm. The distribution size histogram indicated that the most frequent particles were in the range of 10–15?nm and the mean size of nanoparticles was 17.30?nm. The results of SEM image showed nanoparticles with a size range between 15 and 43?nm. XRD pattern indicated the crystalline nature of synthesized nanoparticles. EDS results confirmed the presence of elements like silver, carbon, chlorine, nitrogen, and oxygen in the nanoparticles produced from leaf extract. Silver had the maximum percentage of formation, 51.6%. FTIR indicated the presence of different functional groups such as amines, alcohol, alkanes, phenol, alkyl halides, and aromatic loops in the synthesis process. Green biosynthesis of AgNPs using aqueous extract of native A. marina appears rapid, reliable, nontoxic, and eco-friendly.  相似文献   
32.
The degradation of phenol was investigated in a continuous flow impinging streams system. In the first step, statistical experimental designs were used to optimize the process of phenol degradation in a photo-impinging streams reactor. The more important factors affecting phenol degradation (p<0.05) were screened by a two-level Plackett-Burman design. Four of the latter parameters, namely phenol concentration, catalyst loading, pH and slurry flow rate, were selected for final process optimization, applying central composite design (CCD). The predicted data showed that the maximum removal efficiency of phenol (99%) could be obtained under the optimum operating conditions (phenol concentration=50 mg l ?1, catalyst loading=2.1 g l ?1, pH 6.2 and slurry flow rate=550ml min?1). These predicted values were then verified by certain validating experiments. A good correlation was observed between the predicted data and those determined by the experimental study. This may confirm the validity of the statistical optimum strategy. Finally, continuous degradation of phenol was performed, and the results indicated a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes.  相似文献   
33.
34.
The kinetics of sucrose hydrolysis by invertase was studied in order to find a comprehensive model for the reaction pathway and mechanism. First, three common models of Michaelis‐Menten (MM), substrate inhibition (S2), and substrate clusters' inhibition (S3(I)) were investigated. The third model was found to better predict the initial sucrose concentration. Then, the S3(I) model was modified to cover the remaining pathway (S3(II)). Finally, a new comprehensive model (S3(III)) was evaluated, which in addition to what is considered in the two previously mentioned models (S3(I) and S3(II)) also involved the initial time lag. The model predictions showed an excellent agreement with the experimental data. The mean absolute error for the MM model is significantly reduced for the S3(III) model.  相似文献   
35.
Phase change materials (PCMs) function based on latent heat stored on or released from a substance over a slim temperature range. Multiwalled carbon nanotubes (MWCNTs) and polyaniline are important elements in sensor devices. In this work, pristine and polyaniline‐grafted MWCNTs (PANI‐g‐MWCNTs) were applied as conductive carbon‐based fillers to make PCMs based on paraffin. The attachment of PANI to the surface of MWCNTs was proved by Fourier transform Infrared analysis. Dispersion of MWCNTs in paraffin was studied by wide‐angle X‐ray scattering. Heating and solidification of PCM nanocomposites were investigated by differential scanning calorimetry, while variation in nanostructure of PCMs during heating/solidification process was evaluated by rheological measurements. It was found that after 30 min of sonication, the samples filled with 1 wt % MWCNTs have melting and solidification temperatures of 29 and 42 °C, respectively. It was also found that PANI attachment to MWCNTs significantly changes thermal conductivity behavior of PCM nanocomposites. The developed MWCNTs‐based sensor elements responded sharply at low MWCNTs content, and experienced an almost steady trend in conductivity at higher contents, while PANI‐g‐MWCNTs sensor followed an inverse trend. This contradictory behavior brought insight for understanding the response of PCMs against thermal fluctuations. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45389.  相似文献   
36.
The phenolic-based composites and components are widely used because of their excellent thermal, tribological and mechanical behaviors. In the present study, phenolic resin composed of hexamine, novalac, furfural, and furfuryl alcohol has been used. The effects of two carbide nanoparticles (SiC and TiC) and two oxide nanoparticles (TiO2 and ZrO2) on the tribological properties of phenolic resin were experimentally investigated. This paper intends to identify the effects of different fillers, fraction of particles and normal load on wear rate and coefficient of friction in dry sliding wear of phenolic-based nanocomposites against hard metal. The proportions of fillers were 0.5, 1 and 2?vol% and experiments were carried out under 40, 50, 60 and 70?N loads and at 0.2?m/s speed. The fillers were mixed with phenolic resin and molded in the form of a cylinder (8.5?mm diameter?×?25?mm height). The samples were cured at 135?°C with a special heating cycle. The wear tests were performed on pin-on-disk testing apparatus at ambient temperature. The composite pins were tested in dry sliding against carbon steel disk. The worn surfaces of samples have been investigated by SEM and the effects of nanometer particles showed different wear mechanisms. Observations showed that carbide particles have better enhancing effect on tribological properties of phenolic resin as compared to the oxide particles. Nanocomposites with SiC particles showed the best tribological properties among the investigated samples. The optimal content of SiC nanoparticles were 1?vol%.  相似文献   
37.
In the present work, attempts were made to investigate the thermal and mechanical properties of melt‐processed poly(ethylene terephthalate) (PET)/poly(ethylene 2,6‐naphthalate) (PEN) blends and its nanocomposites containing graphene by using differential scanning calorimetry and tensile test experimenting. The results showed that crystallinity, which depends on a blend ratio, completely disappeared in a composition of 50/50. By introducing graphene to PET, even in low concentrations, the crystallinity of samples increased, while the nanocomposite of PEN indicated reverse behavior, and the crystallinity was reduced by adding graphene. In the case of PET‐rich (75/25) nanocomposite blends, by increasing the nano content in the blend, the crystallinity of the samples was enhanced. This behavior was attributed to the nucleating effect of graphene particles in the samples. From the results of mechanical experiments, it was found in PET‐rich blends that by increasing the PEN/PET ratio, the modulus of samples decreased, whereas in the case of PEN‐rich blends, a slight increment of modulus is seen as a result of the increment of the PEN/PET ratio. The two contradicting behaviors were attributed to the reduction of crystallinity of PET‐rich blends by enhancement of PEN/PET ratio and the rigid structure of PEN chains in PEN‐rich blends. Unlike the different modulus change of PET‐rich and PEN‐rich blends, the nanocomposites of these blends similarly indicated an increment of modulus and characteristics of rigid materials by increasing the nano content. Furthermore, the same behavior was detected in nanocomposites of each polymer (PET and PEN nanocomposites). The alteration from ductile to rigid conduction was related to the impedance in the role of graphene plates against the flexibility of polymer chains and high values of graphene modulus. J. VINYL ADDIT. TECHNOL., 23:210–218, 2017. © 2015 Society of Plastics Engineers  相似文献   
38.
SAPO-34 nanocrystals (inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO2, CH4, and N2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes (MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO2, CH4, and N2, respectively, as compared to the permeability of neat polyurethane membrane. Also, the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO2/CH4 and CO2/N2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression (PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy (R2 > 99%).  相似文献   
39.
40.
Aluminum and titanium are deposited on the surface of steel by the pack cementation method to improve its hot-corrosion and high-temperature oxidation resistance. In this research, coatings of aluminum and titanium and a two-step coating of aluminum and titanium were applied on an AISI 304 stainless steel substrate. The coating layers were examined by carrying out scanning electron microscopy (SEM) and x-ray diffraction (XRD). The SEM results showed that the aluminized coating consisted of two layers with a thickness of 450???m each, the titanized coating consisted of two layers with a thickness of 100???m each, and the two-step coatings of Al and Ti consisted of three layers with a thickness of 200???m each. The XRD investigation of the coatings showed that the aluminized coating consisted of Al2O3, AlCr2, FeAl, and Fe3Al phases; the titanized layers contained TiO2, Ni3Ti, FeNi, and Fe2TiO5 phases; and the two-step coating contained AlNi, Ti3Al, and FeAl phases. The uncoated and coated specimens were subjected to isothermal oxidation at 1050?°C for 100?h. The oxidation results revealed that the application of a coating layer increased the oxidation resistance of the coated AISI 304 samples as opposed to the uncoated ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号