首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1427篇
  免费   71篇
  国内免费   16篇
电工技术   27篇
综合类   7篇
化学工业   384篇
金属工艺   41篇
机械仪表   60篇
建筑科学   51篇
矿业工程   14篇
能源动力   95篇
轻工业   103篇
水利工程   10篇
石油天然气   41篇
无线电   131篇
一般工业技术   259篇
冶金工业   58篇
原子能技术   4篇
自动化技术   229篇
  2024年   3篇
  2023年   30篇
  2022年   67篇
  2021年   89篇
  2020年   65篇
  2019年   87篇
  2018年   123篇
  2017年   88篇
  2016年   81篇
  2015年   50篇
  2014年   75篇
  2013年   162篇
  2012年   89篇
  2011年   98篇
  2010年   64篇
  2009年   72篇
  2008年   36篇
  2007年   25篇
  2006年   24篇
  2005年   19篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   9篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有1514条查询结果,搜索用时 15 毫秒
51.
Electrocatalytic oxidation of methanol and some other primary alcohols on a glassy carbon electrode modified with multi-walled carbon nanotubes and nano-sized nickel oxide (GCE/MWNT/NiO) was investigated by cyclic voltammetry and chronoamperometry in alkaline medium. The results were compared with those obtained on a nickel oxide-modified glassy carbon electrode (GCE/NiO). Both the electrodes were conditioned by potential cycling in the range of 0.1–0.6 V versus Ag/AgCl in a 0.10 M NaOH solution. The effects of various parameters such as scan rate, alcohol concentration, thickness of NiO film, and real surface area of the modified electrodes were also investigated and compared. It was found that the GCE/MWNT/NiO-modified electrode possesses an improved electrochemical behavior over the GC/NiO-modified electrode for methanol oxidation.  相似文献   
52.
Bioactive glass 46S6 and biodegradable therapeutic polymer (Chitosan: CH) have been elaborated to form 46S6-CH composite by freeze-drying process. The kinetics of chemical reactivity and bioactivity at the surface were investigated by using physicochemical techniques, particularly solid-state MAS-NMR. Immortalized cell line used to construct multicellular spheroids was employed as three-dimensional (3D) cell cultures for in vitro studies. Obtained results showed a novel structure of the composite; the chemical treatment (ultrasound, magnetic stirring, freeze drying process and lyophilization) led the bioactive glass particles to be loaded in the chitosan-based materials. 29Si and 31P MAS-NMR results showed the emergence of two new species, Q Si 3 (OH) and Q Si 4 , which are characteristic of the vitreous network dissolution in simulated body fluid (SBF). MAS-NMR also confirmed the formation of amorphous calcium phosphate (ACP) at the surface of the initial 46S6-CH. Three-dimensional (3D) cell cultures highlighted the effect of chitosan, where the cell viability reached up to 78% in 46S6-CH composite and up to 67% in 46S6. The association of (CH) and bioactive glass (BG) matrix promotes a highly significant bioactivity, demonstrating surface bone formation and satisfactory behavior in biological environment.  相似文献   
53.
A thermal dispersion model is utilized for simulation of convective heat transfer of water-TiO2 nanofluid for laminar flow in circular tube. Concentration distribution at cross section of the tube was obtained considering the effects of particle migration, and this concentration distribution was applied in the numerical solution. Numerical solution was done at Reynolds numbers of 500 to 2000 and mean concentrations of 0.5 to 3%. Meanwhile, an experimental study was conducted to investigate the accuracy of the results obtained from the numerical solution. Non-uniformity of the concentration distribution increases with raising mean concentration and Reynolds number. Thereby, for mean concentration of 3%, at Reynolds numbers of 500 and 2000, the concentration from wall to center of the tube increases 2.6 and 30.9%, respectively. In the dispersion model, application of non-uniform concentration distribution improves the accuracy in prediction of the convective heat transfer coefficient in comparison with applying uniform concentration.  相似文献   
54.
The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.  相似文献   
55.
Recently, many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties. Although statistical analysis is a common method for developing regression models, but still selection of suitable transformation of the independent variables in a regression model is difficult. In this paper, a genetic algorithm (GA) has been employed as a heuristic search method for selection of best transformation of the independent variables (some index properties of rocks) in regression models for prediction of uniaxial compressive strength (UCS) and modulus of elasticity (E). Firstly, multiple linear regression (MLR) analysis was performed on a data set to establish predictive models. Then, two GA models were developed in which root mean squared error (RMSE) was defined as fitness function. Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.  相似文献   
56.
Effects of various concentrations (0–5 ppm) of anionic (sodium dodecyl sulfate, SDS) and non‐ionic (Tween‐80 and Triton X‐405) surfactants on gas hold‐up and gas–liquid mass transfer in a split‐cylinder airlift reactor are reported for air–water. Surfactants were found to strongly enhance gas hold‐up. Non‐ionic surfactants were more effective in enhancing gas hold‐up compared to the anionic surfactant SDS. An enhanced gas hold‐up and a visually reduced bubble size in the presence of surfactants implied an enhanced gas–liquid interfacial area for mass transfer. Nevertheless, the overall gas–liquid volumetric mass transfer coefficient was reduced in the presence of surfactants, suggesting that surfactants greatly reduced the true liquid film mass transfer coefficient and this reduction outweighed the interfacial area enhancing effect. Presence of surfactants did not substantially affect the induced liquid circulation rate in the airlift vessel.  相似文献   
57.
For SCR of NO the study of Ir/Al2O3 solids shows the importance of the activation procedure under mixtures containing CO (NO–C3H6–CO–O2 or NO–CO–O2). The selective reductant remains C3H6, however. The activation goes with an iridium particles sintering without Ir loss.  相似文献   
58.
In the present work, ZnAl2O4 nanoparticles have been synthesized with the aid of Zn(OAc)2·2H2O and Al(NO3)3·9H2O as starting reagents in the presence of microwave irradiation. Besides, the effect of preparation parameters such as microwave power and irradiation time on the morphology and particle size of products was studied by SEM images. The as-prepared ZnAl2O4 nanoparticles were characterized extensively by techniques like XRD, TEM, SEM, FT-IR, PL, and EDS. Photoluminescence studies of the ZnAl2O4 nanoparticles displayed quantum confinement behavior with band gap of 3.2 eV. The XRD studies showed that pure orthorhombic ZnAl2O4 nanoparticles have been produced after calcination.  相似文献   
59.
Volatile organic compounds (VOCs) are among the major sources of air pollution. Catalytic ozonation is an efficient process for removing VOCs at lower reaction temperature compared to catalytic oxidation. In this study, a series of alumina supported single and mixed manganese and cobalt oxides catalysts were used for ozonation of acetone at room temperature. The influence of augmenting the single Mn and Co catalysts were investigated on the performance and structure of the catalyst. The manganese and cobalt single and mixed oxides catalysts of the formula Mn10%-CoX and Co10%-MnX (where X= 0, 2.5%, 5%, or 10%) were prepared. It was found that addition of Mn and Co at lower loading levels (2.5% or 5%) to single metal oxide catalysts enhanced the catalytic activity. The mixed oxides catalysts of (Mn10%-Co2.5%) and (Mn10%-Co5%) led to acetone conversion of about 84%. It is concluded that lower oxidation state of the secondary metal improves ozone decomposition and oxidation of acetone.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号