首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   27篇
电工技术   10篇
综合类   1篇
化学工业   150篇
金属工艺   7篇
机械仪表   19篇
建筑科学   23篇
能源动力   48篇
轻工业   32篇
水利工程   3篇
石油天然气   12篇
无线电   18篇
一般工业技术   80篇
冶金工业   51篇
原子能技术   2篇
自动化技术   69篇
  2023年   14篇
  2022年   15篇
  2021年   23篇
  2020年   17篇
  2019年   20篇
  2018年   31篇
  2017年   22篇
  2016年   21篇
  2015年   16篇
  2014年   18篇
  2013年   51篇
  2012年   23篇
  2011年   30篇
  2010年   18篇
  2009年   15篇
  2008年   9篇
  2007年   11篇
  2006年   8篇
  2005年   14篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  1999年   3篇
  1998年   26篇
  1997年   12篇
  1996年   11篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1981年   2篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有525条查询结果,搜索用时 0 毫秒
11.
12.
In this work, we present a simple and fast method for elaborating hybrid membranes by growing metal–organic framework crystals inside a polymer solution. The solution thus obtained was casted then annealed at 90°C for 5 h. This method was tested with poly(vinylidene fluoride) (PVDF) as a piezoelectric polymer and the Cu3(BTC)2, BTC = 1,3,5-benzene tricarboxylate, as a filler. The characterization of the obtained membranes by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray diffraction showed the presence of the characteristic signatures of Cu3(BTC)2 and the β-phase of PVDF. Moreover, scanning electron microscopy images reveal that the Cu3(BTC)2 crystallites have grown along the PVDF membranes. The effect of the filler on both thermal and mechanical properties of the membranes was also studied. POLYM. ENG. SCI., 60:464–473, 2020. © 2019 Society of Plastics Engineers  相似文献   
13.
The main objective of this work was to reduce barriers that prevent the usage of starch‐based foams by understanding the effect and the sequence of dual‐modification of crosslinked (XL) and acetylated (Ac) starch in one continuous supercritical fluid reactive extrusion (SCFX) process on wetting properties, physicochemical properties, and cellular structure of solid foam. The starch was reacted with epichlorohydrin (EPI) and acetic anhydride (Ac) under alkaline conditions in a twin‐screw extruder in the presence of supercritical carbon dioxide (SC‐CO2). An increase in EPI concentration from 0.00 to 3.00% increased the degree of crosslinking as measured by DSC and confirmed by the quantification of the glucose units in the solution after acid hydrolysis. We observed a reduction of the glucose units from 93.07% for 0.00% EPI to 6.73% when 3.00% EPI was added. With crosslinking/acetylation processing, contact angle was higher for modified starches, indicating that chemical treatments induced dramatic changes in their surface polarity. Compared with native, the contact angle for dual modified starch increased from 43.1° to 91.7° which indicated their lower wettability. The addition of SC‐CO2, EPI, and Ac to the formulation reduced the density of the extrudates and increased the expansion ratio. The average cell size in the extrudate determined by scanning electron microscopy was also found to decrease from 150 to 34 μm by the addition of the two reagents. Moreover, the dual‐modification of starches provided more hardness and adhesiveness to the extrudates than was observed for the unmodified starches. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
14.
A series of diphenylquinoxaline‐containing polyamides were prepared from the condensation polymerization of 2,3‐bis (4‐bromophenyl) quinoxaline (DBQ) with various primary and secondary diamides via copper‐catalyzed amidation reaction. The polyamides were characterized with FTIR, NMR, GPC, differential scanning calorimeter, and thermo gravimetric analysis, and their solubility and viscosity were measured. The polyamides synthesized here are amorphous and showed relatively good solubility in polar aprotic solvents and demonstrate the ability to form brownish hard films by solvent casting; their inherent viscosities ranged from 49 to 55 mL/g. The average molecular weights of polyamides were in the range of Mw = 11,950–5592 g/mol (MWD = 1.21–1.87). These polyamides had relatively high thermal stability with Tg values up to 276°C, 10% weight loss temperatures (T10%) in the range of 364–476°C, and char yields at 600°C in N2 up to 72%. They also exhibit emission in the solid state and in dilute (0.2 g/dL) DMAc solution at 425–484 nm with photoluminescence quantum (?f) yields in the range of 14–23%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
15.
The insufficient viscoelastic resistance of fiber reinforced plastics can be retrofitted by the addition of more rigid nano fillers to the polymer matrix. In this study, carbon fibers plies were grafted with zinc oxide (ZnO) nano‐rods and the hybridized reinforcement was utilized in laminated composites. Flexural creep tests were carried out using dynamic mechanical analysis (DMA) and the time/temperature superposition principle was employed for accelerated testing. To verify the applicability of TTPS, prolonged stress relaxation tests were also carried out in flexural mode. Data from the DMA flexural creep tests revealed that the whiskerization of carbon fibers with ZnO nano rods reduced the creep compliance by 23% at elevated temperatures and prolonged durations. Also, the relaxation data confirmed the applicability of TTPS to these hybrid composites. The stress relaxation modulus improved by 65% in comparison to composites based on neat carbon fibers. POLYM. COMPOS., 36:1967–1972, 2015. © 2014 Society of Plastics Engineer  相似文献   
16.
17.
Haloxylon ammodendron (HA), a desert plant residue, has been utilized as adsorbent material for the removal of Hg (II) ions from laboratory wastewater after treatment with phosphoric acid to form Haloxylon ammodendron cellulose phosphate (HACP). Three levels of HACP having different phosphorous content were prepared. The HACP samples were characterized by estimating the phosphorous content as well as FT-IR spectra. Using the batch experimental systems, the removal of Hg (II) on the HACP particles was investigated. The data of the adsorption isotherm was tested by the Langmuir, Freundlich and Temkin models. The removal processes of Hg (II) onto HACP particles could be well described by pseudo-second order model. The adsorption rate of mercury was affected by the initial heavy metal concentration, initial pH, adsorbent dose and agitation time and temperature as well as extent of modification. The adsorption experiments indicated that the HACP particles have great potential for the removal of Hg (II) from laboratory wastewater. The maximum adsorption capacity (Qmax) of the HACP towards Hg (II) ions was found to be 384.6 and 416.7 and 476.2 mg/g at 30, 40 and 50°C, respectively. Similarly, the Freundlich constant, n values were found to be 6.6, 4.4 and 3.8 at 30, 40 and 50°C, respectively. The thermodynamics constants of the adsorption process: ΔH°, ΔS° and ΔG° were evaluated.  相似文献   
18.
Preparation of a biopolymer chitosan‐polypropylene imine (CS‐PPI) as a biocompatible adsorbent and its reactive textile dyes removal potential were performed. Chemical specifications of CS‐PPI were determined using Fourier transform infrared, 1H‐NMR, and 13C‐NMR. The surface morphology of the CS‐PPI surface was characterized by scanning electron microscopy. Results confirmed that the linkages between the NH2 groups of PPI dendrimer and carboxylic groups of modified Chitosan were accomplished chemically. Two textile reactive dyes, reactive black 5 (RB5) and reactive red 198 (RR198), were used as model compounds. A response surface methodology was applied to estimate the simple and combined effects of the operating variables, including pH, dye concentration, time contact, and temperature. Under the optimal values of process parameters, the dye removal performance of 97 and 99% was achieved for RB5 and RR198, respectively. Furthermore, the isotherm and kinetic models of dyes adsorption were performed. Adsorption data represented that both examined dye followed the Langmuir isotherm. The adsorption kinetics of both reactive dyes were satisfied by pseudo‐second order equation. Based on this study, CS‐PPI due to having high adsorption capacity (6250 mg/g for RB5 and 5882.35 mg/g for RR198), biocompatibility and ecofriendly properties might be a suitable adsorbent for removal of reactive dyes from colored solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
19.
20.
In this research, chitosan-poly(propylene)imine dendrimer hybrid (CS-PPI) was applied to wool fabrics; and weight gain and antibacterial properties of the grafted wool fabric by CS-PPI were investigated. A response surface methodology employed for optimization of the important factors such as pH, processing time, and CS-PPI and cross-linking agent (CA) concentrations. The physical properties showed sensible changes regardless of weight gain. The maximum weight gain was obtained when the wool fabrics were treated with pH 5, processing time 24 h, CS-PPI 20 %(owf) and CA 5 % over weight of fiber (owf). Scanning electron microscopy analysis showed the presence of foreign particles determinedly fixed to the surface of the wool fabric. Fourier transform infrared spectroscopy and differential scanning colorimetry revealed the grafting of CS-PPI onto wool fabric by forming novel chemical bonds between the wool and CS-PPI molecules. The treated wool fabrics showed broad-spectrum antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrobial activities of the treated wool by CS-PPI at a concentration of 20 % over weight of fiber (owf) demonstrated 100 % bacterial growth inhibition, which was preserved more than 84 % even after being washed in 12 various conditions repeatedly. The grafted wool fabrics have antibacterial potential due to the antibacterial property of CS-PPI molecules. The mechanism of CS-PPI grafting onto wool fabric using CA was proposed. The findings of this study support the potential production of the new environmentally friendly textile fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号