首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5716篇
  免费   522篇
  国内免费   64篇
电工技术   66篇
综合类   25篇
化学工业   1343篇
金属工艺   80篇
机械仪表   275篇
建筑科学   108篇
矿业工程   8篇
能源动力   350篇
轻工业   744篇
水利工程   69篇
石油天然气   30篇
武器工业   1篇
无线电   746篇
一般工业技术   1295篇
冶金工业   94篇
原子能技术   53篇
自动化技术   1015篇
  2024年   37篇
  2023年   217篇
  2022年   510篇
  2021年   786篇
  2020年   481篇
  2019年   533篇
  2018年   498篇
  2017年   407篇
  2016年   417篇
  2015年   255篇
  2014年   310篇
  2013年   419篇
  2012年   255篇
  2011年   315篇
  2010年   183篇
  2009年   147篇
  2008年   99篇
  2007年   98篇
  2006年   39篇
  2005年   30篇
  2004年   42篇
  2003年   30篇
  2002年   23篇
  2001年   10篇
  2000年   13篇
  1999年   14篇
  1998年   18篇
  1997年   10篇
  1996年   11篇
  1995年   18篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   1篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1961年   1篇
排序方式: 共有6302条查询结果,搜索用时 109 毫秒
991.
Nanocrystals can be used as storage media for carriers in flash memories. The performance of a nanocrystal flash memory depends critically on the choice of nanocrystal size and density as well as on the choice of tunnel dielectric properties. The performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability. We present a model that describes the charge/discharge dynamics of nanocrystal flash memories and calculate the effect of nanocrystal, gate, tunnel dielectric and substrate properties on device performance. The model assumes charge storage in quantized energy levels of nanocrystals. Effect of temperature is included implicitly in the model through perturbation of the substrate minority carrier concentration and Fermi level. Because a large number of variables affect these performance measures, in order to compare various designs, a figure of merit that measures the device performance in terms of design parameters is defined as a function of write/erase/discharge times which are calculated using the theoretical model. The effects of nanocrystal size and density, gate work function, substrate doping, control and tunnel dielectric properties and device geometry on the device performance are evaluated through the figure of merit. Experimental data showing agreement of the theoretical model with the measurement results are presented for devices that has PECVD grown germanium nanocrystals as the storage media.  相似文献   
992.
993.
Blending of small‐molecule organic semiconductors (OSCs) with amorphous polymers is known to yield high performance organic thin film transistors (OTFTs). Vertical stratification of the OSC and polymer binder into well‐defined layers is crucial in such systems and their vertical order determines whether the coating is compatible with a top and/or a bottom gate OTFT configuration. Here, we investigate the formation of blends prepared via spin‐coating in conditions which yield bilayer and trilayer stratifications. We use a combination of in situ experimental and computational tools to study the competing effects of formulation thermodynamics and process kinetics in mediating the final vertical stratification. It is shown that trilayer stratification (OSC/polymer/OSC) is the thermodynamically favored configuration and that formation of the buried OSC layer can be kinetically inhibited in certain conditions of spin‐coating, resulting in a bilayer stack instead. The analysis reveals here that preferential loss of the OSC, combined with early aggregation of the polymer phase due to rapid drying, inhibit the formation of the buried OSC layer. The fluid dynamics and drying kinetics are then moderated during spin‐coating to promote trilayer stratification with a high quality buried OSC layer which yields unusually high mobility >2 cm2 V?1 s?1 in the bottom‐gate top‐contact configuration.  相似文献   
994.
A local error method based on an analytical scheme previously developed for the scalar optical fiber channel is applied to the second-order symmetrized split-step Fourier simulation of polarization multiplexed signal propagation through dispersion compensated optical fiber links. It is found that the global simulation accuracy for the vector propagation can be satisfied using the local error bound from a scalar propagation model for the same global error over a large range of simulation accuracy, chromatic dispersion, and differential group delay. Furthermore, carefully designed numerical simulations are used to show that similar local simulation error are obtained for vector simulations and that the similar local error leads to higher computational efficiency compared to other prevalent step-size selection schemes. The scaling of the global simulation error with respect to the number of optical fiber spans is demonstrated, and global error control for multi-span simulations is proposed. Combining the local error and global error control, the developed simulation scheme can significantly speed up the time-consuming simulations in coherent optical fiber communication system analysis and design.  相似文献   
995.
Silicon underpins microelectronics but lacks the photonic capability needed for next‐generation systems and currently relies on a highly undesirable hybridization of separate discrete devices using direct band gap semiconductors. Rare‐earth (RE) implantation is a promising approach to bestow photonic capability to silicon but is limited to internal RE transition wavelengths. Reported here is the first observation of direct optical transitions from the silicon band edge to internal f‐levels of implanted REs (Ce, Eu, and Yb); this overturns previously held assumptions about the alignment of RE levels to the silicon band gap. The photoluminescence lines are massively redshifted to several technologically useful wavelengths and modeling of their splitting indicates that they must originate from the REs. Eu‐implanted silicon devices display a greatly enhanced electroluminescence efficiency of 8%. Also observed is the first crystal field splitting in Ce luminescence. Mid‐IR silicon photodetectors with specific detectivities comparable to existing state‐of‐the‐art mid‐IR detectors are demonstrated.  相似文献   
996.
The commercialization of solar fuel devices requires the development of novel engineered photoelectrodes for water splitting applications which are based on redundant, cheap, and environmentally friendly materials. In the current study, a combination of titanium dioxide (TiO2) and zinc oxide (ZnO) onto nanotextured silicon is utilized for a composite electrode with the aim to overcome the individual shortcomings of the respective materials. The properties of conformal coverage of TiO2 and ZnO layers are designed on the atomic scale by the atomic layer deposition technique. The resulting photoanode shows not only promising stability but also nine times higher photocurrents than an equivalent photoanode with a pure TiO2 encapsulation onto the nanostructured silicon. Density functional theory calculations indicate that segregation of TiO2 at the ZnO surfaces is favorable and leads to the stabilization of the ZnO layers in water environments. In conclusion, the novel designed composite material constitutes a promising base for a stable and effective photoanode for the water oxidation reaction.  相似文献   
997.
This paper is concerned with the problem of robust state feedback \(H_\infty \) stabilization for a class of uncertain two-dimensional (2-D) continuous state delayed systems. The parameter uncertainties are assumed to be norm-bounded. Firstly, a new delay-dependent sufficient condition for the robust asymptotical stability of uncertain 2-D continuous systems with state delay is developed. Secondly, a sufficient condition for \(H_\infty \) disturbance attenuation performance of the given system is derived. Thirdly, a stabilizing state feedback controller is proposed such that the resulting closed-loop system is robustly asymptotically stable and achieves a prescribed \(H_\infty \) disturbance attenuation level. All results are developed in terms of linear matrix inequalities. Finally, two examples are provided to validate the effectiveness of the proposed method.  相似文献   
998.
999.
1000.
Sample pretreatment is the most important procedure to remove the matrix for interfacing with mass spectrometry (MS). Additionally, for the samples with low concentration, the process of preconcentration is required before MS analysis. We have newly developed a solid-phase extraction stationary phase based on C60-fullerene covalently bound to silica for purification of biomolecules of different characteristics. Silica particles of different porosity are modified with aminopropyl linker and then covalently bound to C60-fullerenoacetic acid or C60-epoxyfullerenes. The developed materials have been successfully applied as an alternative to commercially available reversed-phase materials for solid-phase extraction. C60-fullerene silica is able to retain small and hydrophilic molecules like phosphopeptides, which can be easily lost by reversed-phase sorbents. The novel materials are applied for desalting and preconcentration of proteins and peptides, especially phosphopeptides. In addition, the C60-fullerene silica is applied for the solid-phase extraction of selected flavonoids with recoveries of approximately 99%. The recoveries are compared with the commercially available solid-phase extraction materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号