首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   12篇
  国内免费   3篇
电工技术   5篇
综合类   1篇
化学工业   97篇
金属工艺   11篇
机械仪表   30篇
建筑科学   7篇
能源动力   19篇
轻工业   22篇
水利工程   3篇
无线电   30篇
一般工业技术   115篇
冶金工业   28篇
原子能技术   3篇
自动化技术   46篇
  2024年   4篇
  2023年   5篇
  2022年   20篇
  2021年   31篇
  2020年   15篇
  2019年   19篇
  2018年   22篇
  2017年   26篇
  2016年   16篇
  2015年   13篇
  2014年   18篇
  2013年   38篇
  2012年   26篇
  2011年   26篇
  2010年   21篇
  2009年   21篇
  2008年   16篇
  2007年   9篇
  2006年   11篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1987年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1976年   1篇
  1973年   2篇
  1969年   1篇
  1967年   1篇
  1959年   2篇
排序方式: 共有417条查询结果,搜索用时 16 毫秒
131.
The rationale of this study is to compare the levels of different antioxidants present in commercially important tomato cultivars of India, specifically developed to grow in high altitude and plain regions. Major antioxidant components like lycopene, ascorbic acid, phenolics, and quenching capacity of free radicals were analysed in different fractions of tomato fruit, i.e., skin, pulp, and seed fractions. Significant differences in antioxidant components were observed among the fractions of the different cultivars studied. Lycopene content was found to be more in high altitude cultivars (‘Sindhu’ and ‘Shalimar’); however, ascorbic acid and phenolic content were found to be higher in plain region cultivars (‘PKM1’ and ‘CO3’). To evaluate the antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays were performed. High altitude cultivars showed 10–15% higher DPPH free radical scavenging activity and 20–30% increase in FRAP than the plain region cultivars. Among the different fruit fractions analysed, skin showed the highest level of antioxidants levels and free radical scavenging activities in all the cultivars tested. The difference in the antioxidants level and activity may be attributed to the genetic variability of the cultivars.  相似文献   
132.
This report documents the design and characterization of DNA molecular nanoarchitectures consisting of artificial double crossover DNA tiles with different geometry and chemistry. The Structural characterization of the unit tiles, including normal, biotinylated and hairpin loop structures, are morphologically studied by atomic force microscopy. The specific proton resonance of the individual tiles and their intra/inter nucleotide relationships are verified by proton nuclear magnetic resonance spectroscopy and 2-dimensional correlation spectral studies, respectively. Significant up-field and down-field shifts in the resonance signals of the individual residues at various temperatures are discussed. The results suggest that with artificially designed DNA tiles it is feasible to obtain structural information of the relative base sequences. These tiles were later fabricated into 2D DNA lattice structures for specific applications such as protein arrangement by biotinylated bulged loops or pattern generation using a hairpin structure.  相似文献   
133.
Two-dimensional (2D) titanium carbide (MXene) nanosheets exhibited excellent conductivity,flexibility,high volumetric capacity,hydrophilic surface,thermal stability,etc.So,it has been exploited in various applications.Herein,we report synthesis of mixed phase 2D MXene as a catalytic material for simultaneous detection of important biomolecules such as ascorbic acid (AA),dopamine (DA) and uric acid (UA),Crystalline structure,surface morphology and elemental composition of mixed phase titanium carbide (Ti-C-Tx) MXene (Tx =-F,-OH,or-O) nanosheets were confirmed by X-ray diffraction (XRD),Raman spectroscopy,high-resolution transmission electron microscopy (HR-TEM),high-resolution scanning electron microscopy (HR-SEM) and Energy-dispersive X-ray spectroscopy (EDS) mapping analysis.Furthermore,Ti-C-Tx modified glassy carbon electrode (GCE) was prepared and its electrochemical properties are studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV).It was found that Ti-C-Tx modified GCE (Ti-C-Tx/GCE) showed excellent electrocatalytic activity and separated oxidation peaks of important biomolecules such as AA (at 0.01 V),DA (at 0.21 V) and UA (at 0.33 V).Also,Ti-C-Tx/GCE sensor is enabled their simultaneous detection in physiological pH from 100 to 1000 μM for AA,0.5-50 μM for DA and 0.5-4 μM & 100-1500 μM for UA.The limit ofdetection's (LOD) was estimated as 4.6 μM,0.06 μM and 0.075 μM for AA,DA and UA,respectively.Moreover,real sample analysis indicated that spiked AA,DA and UA can be determined accurately by Ti-C-Tx/GCE with the recovery ratio in the range between 100.5%-103% in human urine samples.The proposed Ti-C-Tx modified electrode exhibited good stability,selectivity and reproducibility as an electrochemical sensor for the detection ofAA,DA and UA molecules.  相似文献   
134.
Availability of additive manufacturing has influenced the scientific community to improve on production and versatility of the components created with several associated technologies. Adding multiple substances through superimposing levels is considered as a part of three-dimensional (3D) printing innovations to produce required products. These technologies are experiencing an increase in development nowadays. It requires frequently adding substance and has capacity to fabricate extremely complex geometrical shapes. However, the fundamental issues with this advancement include alteration of capacity to create special products with usefulness and properties at an economically viable price. In this study, significant procedural parameters: layer designs/ patterns (hexagonal, rectangular and triangular) and infill densities (30%, 40%, and 50%) were considered to investigate into their effects on mechanical behaviors off fused deposition modeling or 3D-printed onyx-carbon fiber reinforced composite specimens, using a high-end 3D printing machine. Mechanical (tensile and impact) properties of the printed specimens were conclusively analyzed. From the results obtained, it was observed that better qualities were achieved with an increased infill density, and rectangular-shaped design exhibited an optimum or maximum tensile strength and energy absorption rate, when compared with other counterparts. The measurable relapse conditions were viably evolved to anticipate the real mechanical qualities with an accuracy of 96.4%. In comparison with other patterns, this was more closely predicted in the rectangular design, using regression models. The modeled linear regression helps to define the association of two dependent variables linked with properties of the dissimilar composite material natures. The models can further predict response of the quantities before and also guide practical applications.  相似文献   
135.
Peerzada  Jeelani Gh  Chidambaram  Ramalingam 《SILICON》2021,13(7):2089-2101
Silicon - Biogenic silica is an excellent alternative to synthetic silica because of its capricious configuration, density, composition, less toxicity, environmentally friendly synthesis and...  相似文献   
136.
In this article, for the reconstruction of the positron emission tomography (PET) images, an iterative MAP algorithm was instigated with its adaptive neurofuzzy inference system based image segmentation techniques which we call adaptive neurofuzzy inference system based expectation maximization algorithm (ANFIS‐EM). This expectation maximization (EM) algorithm provides better image quality when compared with other traditional methodologies. The efficient result can be obtained using ANFIS‐EM algorithm. Unlike any usual EM algorithm, the predicted method that we call ANFIS‐EM minimizes the EM objective function using maximum a posteriori (MAP) method. In proposed method, the ANFIS‐EM algorithm was instigated by neural network based segmentation process in the image reconstruction. By the image quality parameter of PSNR value, the adaptive neurofuzzy based MAP algorithm and de‐noising algorithm compared and the PET input image is reconstructed and simulated in MATLAB/simulink package. Thus ANFIS‐EM algorithm provides 40% better peak signal to noise ratio (PSNR) when compared with MAP algorithm. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 1–6, 2015  相似文献   
137.
138.
Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.  相似文献   
139.
Nanocrystalline CdS thin films have been prepared by the sol-gel spin-coating method. The influence of spin-coating process parameters such as, thiourea concentration (U), annealing temperature (A), rotational speed (S), and annealing time (T), and so on, on the properties of the prepared films have been studied. The experiments have been carried out based on four factor-five-level central composite designs with the full replication technique, and mathematical models have been developed using regression technique. The central composite rotatable design has been used to minimize the number of experimental parameters. The analysis of variance technique is applied to check the validity of the developed models. The developed mathematical model can be used effectively to predict the particle size in CdS nanocrystalline thin films at 95 pct confidence level. The results have been verified by depositing the films using the same condition. An ultraviolet-visible optical spectroscopy study was carried out to determine the band gap of the CdS nanocrystalline thin films. The band gap has been observed to depend strongly on particle size, and it indicated a blue shift caused by quantum confinement effects. The high-resolution transmission electron microscopy analysis showed the grain size of the prepared CdS film to be 6 nm. The main and interaction effects of deposition parameters on the properties of CdS nanocrystalline thin films also have been studied.  相似文献   
140.
EMA–NBR has been explored to be a potential thermoplastic elastomer blend having good thermal stability as well as oil resistance property. The present investigation reports the optimization of process parameters for the novel polymer blends based on poly(ethylene-co-methyl acrylate) (EMA) and poly(acrylonitrile-co-butadiene) rubber (NBR) with criteria based on the statistical design of experiment (Taguchi L9 orthogonal array). In this case, the polymer blends were prepared by changing the polymer blending conditions such as mixing temperature, mixing time and rotor speed as per Taguchi's L9 orthogonal array. Optimization of the process parameters was carried out based on the physicomechanical properties such as tensile strength, elongation at break, hardness, and tensile impact strength of the resulting EMA/NBR blend. Each processing parameter has been optimized from the experimental data, which are converted into signal-to-noise ratio. The standard statistical technique of analysis of variance result was used to evaluate the proportional role of the different control variables. It has been found that the mixing temperature play very significant role trailed by rotor speed and mixing time in controlling droplet matrix morphology of the EMA/NBR blends. Predominantly, these factors affect the size of the NBR domain and its distribution in the EMA matrix, which in turn have a notable contribution to the physicomechanical properties of the blends. By the optimization of processing conditions, the NBR matrix domain size greatly decreases, leading to significant improvement in physicomechanical properties of the EMA/NBR blends. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48900.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号