首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537071篇
  免费   27171篇
  国内免费   13160篇
电工技术   21638篇
技术理论   58篇
综合类   20105篇
化学工业   87950篇
金属工艺   28790篇
机械仪表   28366篇
建筑科学   29748篇
矿业工程   13125篇
能源动力   14395篇
轻工业   31915篇
水利工程   8161篇
石油天然气   30778篇
武器工业   2722篇
无线电   57813篇
一般工业技术   84250篇
冶金工业   52261篇
原子能技术   9825篇
自动化技术   55502篇
  2023年   5336篇
  2022年   9476篇
  2021年   14494篇
  2020年   11190篇
  2019年   9811篇
  2018年   12742篇
  2017年   13921篇
  2016年   13197篇
  2015年   14549篇
  2014年   19694篇
  2013年   28020篇
  2012年   26231篇
  2011年   29883篇
  2010年   25287篇
  2009年   24953篇
  2008年   24784篇
  2007年   24104篇
  2006年   24115篇
  2005年   21478篇
  2004年   14944篇
  2003年   13642篇
  2002年   12487篇
  2001年   11955篇
  2000年   12299篇
  1999年   13832篇
  1998年   18194篇
  1997年   13829篇
  1996年   11751篇
  1995年   9394篇
  1994年   7888篇
  1993年   6875篇
  1992年   5435篇
  1991年   4912篇
  1990年   4357篇
  1989年   4043篇
  1988年   3847篇
  1987年   3140篇
  1986年   3075篇
  1985年   3169篇
  1984年   2902篇
  1983年   2739篇
  1982年   2489篇
  1981年   2393篇
  1980年   2476篇
  1979年   2423篇
  1978年   2414篇
  1977年   2524篇
  1976年   2930篇
  1975年   2207篇
  1973年   2177篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Glass and Ceramics - An analysis of the specific mechanisms of the influence of the state of the grain structure on the thermoelectric properties (electrical resistivity and total thermal...  相似文献   
62.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
63.
Refractories and Industrial Ceramics - Technology for producing alumina-periclase-carbon refractories of the brands APUK-D and APU-D is developed and implemented. Use of complex antioxidant and...  相似文献   
64.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
65.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
66.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
67.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
68.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
69.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   
70.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号