This paper presents a new adaptive neuro-sliding mode control for gantry crane as varying rope length. This control method derived from combining the sliding surfaces of three subsystem of the gantry crane (trolley position, rope length, anti-swing) to draw out two system sliding surfaces: the trolley position with the anti-swing and the rope length and the anti-swing. On the based of the sliding mode control principle, drawn out the equivalent controller and the switching controller for gantry crane. But due to the uncertain parameters-nonlinear model of gantry crane with the bound disturbances, combining the neural approximate method, defined the neural controller and the compensation controller for the difference between the equivalent controller and the neural controller for two system control inputs: trolley position and rope length. The adaptive control laws for these controllers were deduced from Lyapunov’s stable criteria to asymptotically stabilize the sliding surfaces. Simulation studies are performed to illustrate the effectiveness of the proposed control. 相似文献
The presence of secondary particles to polycrystalline alloys results in kinetic stabilization of the grain boundaries, which maintains desirable fine microstructures. In some instances, secondary particles trigger abnormal grain growth. The mechanisms influencing abnormal grain growth are still a subject of conjecture. As dispersed fine particles can contribute to abnormal grain growth, it is necessary to clarify the governing mechanism by which this occurs. The current work employs a multiphase field modeling approach to shed light onto abnormal grain growth. Particular attention is placed on understanding the role of grain boundary–particle interactions on abnormal grain growth. The results show that, in the presence of particles, normal grain growth occurs until a pinned state is achieved. In the pinned state, some grains overcome the pinning pressure exerted by some particles by piercing through the particles, which results in abnormal grain growth. The piercing events appear to be entirely random and not related to the size of the interacting particles. None-the-less, a bimodal particle size distribution is observed to lead to abnormal grain growth. A pinning parameter is introduced as a metric to identify the transition from normal to abnormal grain growth. 相似文献
Regulating the transfer pathway of charge carriers in heterostructure photocatalysts is of great importance for selective CO2 photoreduction. Herein, the charge transfer pathway and in turn the redox potential succeeded to regulate in 2D MoS2/1D TiO2 heterostructure by varying the light wavelength range. Several in situ measurements and experiments confirm that charge transfer follows either an S-scheme mechanism under simulated solar irradiation or a heterojunction approach under visible light illumination, elucidating the switchable property of the MoS2/TiO2 heterostructure. Replacing the simulated sunlight irradiation with the visible light illumination switches the photocatalytic CO2 reduction product from CO to CH4.13CO2 isotope labeling confirms that CO2 is the source of carbon for CH4 and CO products. The photoelectrochemical H2 generation further supports the switching property of MoS2/TiO2. Unlike previous studies, density functional theory calculations are used to investigate the band structure of Van der Waals MoS2/TiO2 S scheme after contact, allowing to propose accurate charge transfer pathways, in which the theoretical results are well matched with the experimental results. This work opens the opportunity to develop photocatalysts with switchable charge transport and tunable redox potential for selective artificial photosynthesis. 相似文献
This study evaluates Algerian kaolin (Djebel Debbagh (DD1) and Tamazart (KT2)) as potential substitutes for commercial kaolin (Lab) in the production of mullite-based ceramics. Three compositions were prepared by incorporating the appropriate percentage of alumina to each calcined kaolin to achieve stoichiometric mullite precursors. The phase evolution of individual kaolin powders, as well as their mixtures with alumina, depends strongly on the calcination temperature and kaolin impurities. The differential scanning calorimetry combined with thermogravimetric analysis (TGA) showed lower secondary mullite formation temperature for the KT2-based mixture. However, X-ray diffraction revealed a complete mullitization in DD1 mixture. The K2O hindered cristobalite formation and reduced secondary mullite formation rate. Microstructure analysis showed lath-shaped primary mullite and equi-axed secondary mullite particles. After sintering at 1600°C, The KT2-based sample (M3) exhibited higher density (3.013 g/cm3) and hardness (9.9 GPa), whereas the DD2-based sample (M2) showed moderate densification (2.91 g/cm3) and higher flexural strength (159.42 MPa). Impurities (mainly Fe2O3, and K2O) promoted liquid phase sintering, resulting in greater densification in M3, whereas M2 showed more homogeneous microstructure, refined grains, and lower glassy phase content, contributing to enhanced strength. 相似文献
Millions of people around the world currently suffer from kidney stone diseases. While ureteral stenting is an unmistakably effective treatment of these patients, their long-term adverse effects can result in the build-up of crystals around the stent. This, in turn, can lead to new ureter blockages that can dangerously increase kidney pressure, a condition known as hydronephrosis, which, if severe and prolonged, can cause irreversible kidney damage. Toward enabling early detection of hydronephrosis, this paper investigates the first intelligent ureteral stent with an integrated radiofrequency antenna and micro pressure sensor for resonance-based wireless tracking of kidney pressure. Prototyping is conducted using a commercial ureteral stent as the substrate for microfabrication of the device. The packaged device is experimentally assessed for electrical characterizations and wireless pressure sensing using an in vitro test model. Preliminary telemetry testing demonstrates the fundamental ability of the device with its approximately linear responses of up to 1.7 kHz mmHg−1 over a pressure range of up to 120 mmHg in air, water, and artificial urine. These findings verify the efficacy of the device design and the approach to kidney pressure monitoring through indwelling stents, paving the way for the transfer of this technology to today's ureteral stent products. 相似文献
In the present work, we propose a green and sustainable strategy for eco-friendly surface modification of wool structure using biosynthesized kerationlytic proteases, from C4-ITA-EGY, Streptomyces harbinensis S11-ITA-EGY and Streptomyces carpaticus S33-ITA-EGY, followed by subsequent environmentally sound functionalization of the bio-treated substrates using ZnONPs, ZrO2NPs, ascorbic acid and vanillin, individually, to provide durable antibacterial as well as UV-protection properties. Both surface modification changes and the extent of functionalization of the final products were characterized by SEM, EDX, antibacterial efficacy, UV-blocking ability, loss in weight, nitrogen content and durability to washing analysis. The obtained data reveal that the developed green wool fabrics exhibit outstanding durable antibacterial activity and UV-blocking ability for fabricating multi-functional textile products that can be utilized in a wide range of sustainable protective textiles, irrespective of the used post-finishing formulation ingredients. The results also show that both modification and functionalization processes are governed by the type of enzyme and kind of active material respectively. Moreover, the biosynthesized kerationlytic proteases could be accessibly used to remove protein-based stains like blood and egg.
This article presents a novel algorithm that accurately predicts market trends and identifies trading entry points for US 30-year Treasury bonds. The proposed method employs a hybrid approach, integrating a 1-dimensional convolutional neural network (1DCNN), long-short term memory (LSTM), and XGBoost algorithms. The 1DCNN is used to learn local and short-term patterns, while LSTM is employed to capture both short and long-term dependencies. Furthermore, we have implemented an algorithm that utilizes hull moving average (HMA) and simple moving average (SMA) crossover data to detect trading entry points and major trends in the market. The combination of the SMA–HMA crossover algorithm and predictions provided by the 1DCNN-BiLSTM-XGBoost algorithm yields exceptional results in terms of prediction accuracy and profitability. Additionally, these integrated techniques effectively filter out noise and mitigate false breakouts, which are often observed with US 30-year Treasury bonds. In the field of financial time series prediction, the effectiveness of 1DCNN and LSTM in identifying trading entry points and market perturbations has not been comprehensively studied. Therefore, our work fills this gap by demonstrating through experiments that the proposed 1DCNN-BiLSTM-XGBoost algorithm, in combination with moving average crossovers, effectively reduces noise and market perturbations. This leads to the precise identification of trading entry points and accurate recognition of trend signals for US 30-year Treasury bonds. We demonstrate through experiments that our proposed approach achieves an average root mean squared error of 0.0001 and an R-square value of 0.9999, highlighting its promise as a method for predicting market trends and trading entry points for US 30-year Treasury bonds. 相似文献
The influence of inconstant electrical conductivity and chemical reaction on the peristaltic motion of non‐Newtonian Eyring‐Prandtl fluid inside a tapered asymmetric channel is investigated. The system is concerned by a uniform external magnetic field. The heat and mass transfer are considered. The problem is controlled mathematically by a system of nonlinear partial differential equations which describe the velocity, temperature, and nanoparticle concentration of the fluid. By means of long wavelength and low Reynolds numbers, our system is simplified. It is explained by using the multi‐step differential transform method as a semi‐analytical technique. The distributions of velocity, temperature, nanoparticle concentration, as well as pressure gradient and pressure rise are obtained as a function of the physical parameters of the problem. The effects of these parameters on these distributions are deliberated numerically and illustrated graphically through a set of figures. The results indicate that the parameters play a significant role in controlling the velocity, temperature, nanoparticle concentration, pressure gradient, and pressure rise. 相似文献
The current article aims at investigating the effect of a periodic tangential magnetic field on the stability of a horizontal flat sheet. The media were considered porous, the three viscous‐fluid layers were initially streaming with uniform velocities, and the magnetic field admitted the presence of free‐surface currents. Furthermore, the transfer of mass and heat phenomenon was taken into account. The analysis, in this paper, was followed by the viscous potential theory. Moreover, the stability of the boundary‐value problem resulted in coupled second‐order linear differential equations with damping and complex coefficients. In regard to the uniform and periodic magnetic field, the standard normal mode approach was applied to deduce a general dispersion relation and judge the stability criteria. In addition, several unfamiliar cases were reported, according to appropriate data choices. The stability conditions were theoretically analyzed, and the influences of the various parameters in the stability profile were identified through a set of diagrams. In accordance wth the oscillating field, the coupled dispersion equations were combined to give the established Mathieu equation. Therefore, the governed transition curves were, theoretically, obtained. Finally, the results were numerically confirmed. 相似文献