首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10605篇
  免费   574篇
  国内免费   62篇
电工技术   270篇
综合类   28篇
化学工业   2255篇
金属工艺   232篇
机械仪表   254篇
建筑科学   348篇
矿业工程   11篇
能源动力   701篇
轻工业   1032篇
水利工程   117篇
石油天然气   219篇
武器工业   4篇
无线电   1333篇
一般工业技术   1931篇
冶金工业   570篇
原子能技术   90篇
自动化技术   1846篇
  2024年   23篇
  2023年   273篇
  2022年   547篇
  2021年   766篇
  2020年   533篇
  2019年   529篇
  2018年   680篇
  2017年   482篇
  2016年   539篇
  2015年   341篇
  2014年   486篇
  2013年   846篇
  2012年   550篇
  2011年   628篇
  2010年   409篇
  2009年   374篇
  2008年   324篇
  2007年   275篇
  2006年   250篇
  2005年   217篇
  2004年   176篇
  2003年   138篇
  2002年   154篇
  2001年   90篇
  2000年   92篇
  1999年   107篇
  1998年   161篇
  1997年   127篇
  1996年   97篇
  1995年   92篇
  1994年   69篇
  1993年   71篇
  1992年   61篇
  1991年   30篇
  1990年   35篇
  1989年   56篇
  1988年   61篇
  1987年   33篇
  1986年   39篇
  1985年   53篇
  1984年   55篇
  1983年   49篇
  1982年   32篇
  1981年   28篇
  1980年   33篇
  1979年   27篇
  1978年   26篇
  1977年   25篇
  1976年   36篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
91.
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.  相似文献   
92.
Elucidation of the biological functions of extracellular vesicles (EVs) and their potential roles in physiological and pathological processes is an expanding field of research. In this study, we characterized USC–derived EVs and studied their capacity to modulate the human immune response in vitro. We found that the USC–derived EVs are a heterogeneous population, ranging in size from that of micro–vesicles (150 nm–1 μm) down to that of exosomes (60–150 nm). Regarding their immunomodulatory functions, we found that upon isolation, the EVs (60–150 nm) induced B cell proliferation and IgM antibody secretion. Analysis of the EV contents unexpectedly revealed the presence of BAFF, APRIL, IL–6, and CD40L, all known to play a central role in B cell stimulation, differentiation, and humoral immunity. In regard to their effect on T cell functions, they resembled the function of mesenchymal stem cell (MSC)–derived EVs previously described, suppressing T cell response to activation. The finding that USC–derived EVs transport a potent bioactive cargo opens the door to a novel therapeutic avenue for boosting B cell responses in immunodeficiency or cancer.  相似文献   
93.
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is causally related to fibrotic diseases, including idiopathic pulmonary fibrosis. The identification of Compounds that interfere with the HSP47-collagen interaction is essential for the development of relevant therapeutics. Herein, we prepared human HSP47 as a soluble fusion protein expressed in E. coli and established an assay system for HSP47 inhibitor screening. We screened a natural and synthetic Compound library established at Nagasaki University. Among 1023 Compounds, 13 exhibited inhibitory activity against human HSP47, of which three inhibited its function in a dose-dependent manner. Epigallocatechin-3-O-gallate, one of these three Compounds, is a typical polyphenol Compound derived from tea leaves. Structurally related Compounds were synthesized and examined for their activity, revealing a hydroxyl group at A-ring position 5 as important for its activity. The present findings provide valuable insight for the development of natural product-derived therapeutics for fibrotic diseases, including idiopathic pulmonary fibrosis.  相似文献   
94.
Silicon - Chemical reactivity, grindability and zeta potential have been measured and correlated for three variably deformed quartz varieties from three different areas. Results show that there is...  相似文献   
95.
Abdraboh  A. S.  Abdel-Aal  Ahmed A.  Ereiba  Khairy T. 《SILICON》2021,13(2):613-622
Silicon - In this study, inorganic-organic hybrid material consisting of tetraethyl orthosilicate (TEOS) and 3-methacryloxypropyl trimethoxysilane (MAPTMS) were prepared with sol-gel process and...  相似文献   
96.
Faltakh  Hana  Bourguiga  Ramzi  Ahmed  Amira Ben 《SILICON》2021,13(12):4201-4213
Silicon - This paper presents recent progress in computational modeling on blend morphology of silicon nanowires (SiNWs) dispersed in a conjugated polymer poly(3-hexylthiophene) P3HT hybrid solar...  相似文献   
97.
Date palm fiber (DPF) derived from agrowaste was utilized as a new precursor for the optimized synthesis of a cost-effective, nanostructured, powder-activated carbon (nPAC) for aluminum (Al3+) removal from aqueous solutions using carbonization, KOH activation, response surface methodology (RSM) and central composite design (CCD). The optimum synthesis condition, activation temperature, time and impregna-tion ratio were found to be 650 ℃, 1.09 hour and 1:1, respectively. Furthermore, the optimum conditions for removal were 99.5%and 9.958 mg·g-1 in regard to uptake capacity. The optimum conditions of nPAC was analyzed and characterized using XRD, FTIR, FESEM, BET, TGA and Zeta potential. Moreover, the adsorption of the Al3+ conditions was optimized with an integrated RSM-CCD experimental design. Regression results revealed that the adsorption kinetics data was well fitted by the pseudo-second order model, whereas the adsorption isotherm data was best represented by the Freundlich isotherm model. Optimum activated carbon indicated that DPF can serve as a cost-effective precursor adsorbent for Al3+removal.  相似文献   
98.
Surface functionalization of blast furnace slag with sulfamic acid(a zwitterion) was performed for the removal of Cr~(3+) and methylene blue dye(MB) from water samples. The slag functionalization process was optimized using Response Surface Methodology Design. Statistical analysis of the parameters that include the sulfamic acid amount(A), reaction time(B), and temperature(C) revealed that(A) increase had a negative effect on the adsorption of both pollutants by the zwitterion slag, whereas(B) and(C)increase presented a positive impact. At the optimum condition of 2 g sulfamic acid amount, 50 min reaction time and 37 °C temperature, the prepared slag showed a removal efficiency of more than 90% for both Cr~(3+) and MB. Surface characterization by SEM/EDS, FTIR, XPS and surface area analyser, showed an improvement in surface properties and the incorporation of zwitterionic NH_2~+ and S@O groups of sulfamic acid. Adsorption isotherm and kinetic studies conducted with the zwitterion slag showed the adsorption process was suited to Freundlich isotherm model and pseudo-second-order kinetic model.The thermodynamic study conducted revealed the spontaneity of the process based on the calculated negative DG(Gibb's free energy) values. The prepared zwitterion slag offered easy regeneration with dilute HCl solution and showed a considerable removal(Cr3+: 65% and MB: 80%) for both pollutants even after 3 cycles of usage.  相似文献   
99.
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.  相似文献   
100.
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7–40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL−1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5–15.5 ppm for I–IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号