首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   0篇
  国内免费   1篇
电工技术   2篇
化学工业   24篇
建筑科学   3篇
能源动力   12篇
轻工业   6篇
水利工程   3篇
石油天然气   1篇
无线电   32篇
一般工业技术   22篇
冶金工业   5篇
原子能技术   1篇
自动化技术   40篇
  2024年   5篇
  2023年   20篇
  2022年   17篇
  2021年   19篇
  2020年   7篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
91.
A numerical study of band-crossing reactions is conducted using a quasi-one-dimensional (1-D) computational model that accounts for species bulk advection, electromigration velocities, diffusion, and chemical reaction. The model is used to simulate chemical reactions between two initially distinct sample zones, referred to as "bands," that cross each other due to differences in electromigration velocities. The reaction is described in terms of a single step, reversible mechanism involving two reactants and one product. A parametric study is first conducted of the behavior of the species profiles, and results are interpreted in terms of the Damko/spl uml/hler number and of the ratios of the electromigration velocities of the reactant and product. Computed results are then used to explore the possibility of extracting forward and backward reaction rates based on time resolved observation of integral moments of species concentrations. In particular, it is shown that in the case of fast reactions, robust estimates can be obtained for high forward rates, but that small reverse rates may not be accurately observed.  相似文献   
92.
93.
    
Minimizing the amount of spill code is still an open problem in code generation and optimization. The amount of spill code depends on both the register allocation algorithm and the pre‐allocation instruction scheduling algorithm that controls the register pressure. In this paper, we focus on the impact of pre‐allocation instruction scheduling on the amount of spill code. Many heuristic techniques have been proposed to do instruction scheduling with the objective of minimizing register pressure and consequently the amount of spill code. However, the performance of these heuristic techniques has not been studied relative to optimality on real large‐scale programs. In this paper, we present an experimental study that evaluates the performance of several pre‐allocation scheduling heuristics. The evaluation involves computing an experimental lower bound on the size of gap between each heuristic's performance and optimal performance. We also propose a simple heuristic technique based on a specific permutation of two basic priority schemes and experimentally evaluate the performance of this technique compared with other heuristics, including the heuristics implemented in the LLVM open‐source Compiler. The evaluation is carried out by running SPEC CPU2006 on real x86‐64 hardware and measuring both the amount of spill code and the execution time. The results of our study show that the proposed heuristic technique gives better overall performance than LLVM's best heuristic on x86‐64, although it produces slightly more spilling. The proposed heuristic has better overall performance, because it achieves a better balance between register pressure and instruction‐level parallelism (ILP). This result shows the importance of ILP in pre‐allocation scheduling even on out‐of‐order machines. Furthermore, the results of the study show that there is a large gap between the performance of any of the studied heuristics and optimal performance; even the best heuristic in the study produces significantly more spill code than the optimal amount. This experimental result quantifies the intuitive belief that it is unlikely to find a heuristic that works well in all cases, thus showing the need for more rigorous solutions using combinatorial approaches. The paper discusses the challenges and complexities that are involved in developing such rigorous solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
    
Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb‐incorporation into the MAPbI3 (MA = CH3NH3 +) lattice. Moreover, morphological studies and time‐resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI3 layers and charge‐carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs‐containing MAPbI3 systems compared to the pristine MAPbI3. Investigation including mixed halide (I/Br) and mixed cation A‐cation based compositions further confirms the absence of Rb+ from the 3D‐perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.  相似文献   
95.
    
There is an ongoing surge of interest in the use of formamidinium (FA) lead iodide perovskites in photovoltaics due to their exceptional optoelectronic properties. However, thermodynamic instability of the desired cubic perovskite (α-FAPbI3) phase at ambient conditions leads to the formation of a yellow non-perovskite (δ-FAPbI3) phase that compromises its utility. A stable α-FAPbI3 perovskite phase is achieved by employing benzylammonium iodide (BzI) and the microscopic structure is elucidated by using solid-state NMR spectroscopy and X-ray scattering measurements. Perovskite solar cells based on the FAPbI3(BzI)0.25 composition achieve power conversion efficiencies exceeding 20%, which is accompanied by enhanced shelf-life and operational stability, maintaining 80% of the performance after one year at ambient conditions.  相似文献   
96.
    
Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.  相似文献   
97.
Journal of Inorganic and Organometallic Polymers and Materials - In the present work, we examined the impact of Fe2O3 on the mechanical and photon shielding characteristics of lead-phosphoaluminate...  相似文献   
98.
The dynamic power consumed by a digital CMOS circuit is directly proportional to both switching activity and interconnect capacitance. In this paper, we consider early prediction of net activity and interconnect capacitance in field-programmable gate array (FPGA) designs. We develop empirical prediction models for these parameters, suitable for use in power-aware layout synthesis, early power estimation/planning, and other applications. We examine how switching activity on a net changes when delays are zero (zero delay activity) versus when logic delays are considered (logic delay activity) versus when both logic and routing delays are considered (routed delay activity). We then describe a novel approach for prelayout activity prediction that estimates a net's routed delay activity using only zero or logic delay activity values, along with structural and functional circuit properties. For capacitance prediction, we show that prediction accuracy is improved by considering aspects of the FPGA interconnect architecture in addition to generic parameters, such as net fanout and bounding box perimeter length. We also demonstrate that there is an inherent variability (noise) in the switching activity and capacitance of nets that limits the accuracy attainable in prediction. Experimental results show the proposed prediction models work well given the noise limitations.  相似文献   
99.
We present a technique, termed clock-generating (CG) domino, for improving dual-output domino logic that reduces area, clock load and power without increasing the delay. A delayed clock, generated from certain dual-output gates, is used to convert other dual-output gates to single output. Simulation results with ISCAS 85 benchmark circuits indicate an average reduction in area, clock load, and power of 17%, 20%, and 24%, respectively, over dual-output domino and a 48% power reduction for the largest circuit.  相似文献   
100.
Reconfigurable hardware in the form of field programmable gate arrays (FPGAs) has been proposed as a way of obtaining high performance for computationally intensive DSP applications such as image processing (IP), even under real time requirements. The inherent reprogrammability of FPGAs gives them some of the flexibility of software while keeping the performance advantages of an application specific solution. However, a major disadvantage of FPGAs is their low level programming model. To bridge the gap between these two levels, the authors present a high level software environment for FPGA-based image processing, which aims to hide hardware details as much as possible from the user. Their approach is to provide a very high level image processing coprocessor (IPC) with a core instruction set based on the operations of image algebra. The environment includes a generator which generates optimised architectures for specific user-defined operations  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号