首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1117篇
  免费   58篇
  国内免费   2篇
电工技术   4篇
综合类   2篇
化学工业   351篇
金属工艺   14篇
机械仪表   13篇
建筑科学   51篇
能源动力   14篇
轻工业   211篇
水利工程   10篇
石油天然气   2篇
无线电   70篇
一般工业技术   184篇
冶金工业   90篇
原子能技术   12篇
自动化技术   149篇
  2024年   3篇
  2023年   8篇
  2022年   45篇
  2021年   42篇
  2020年   39篇
  2019年   22篇
  2018年   30篇
  2017年   30篇
  2016年   41篇
  2015年   32篇
  2014年   43篇
  2013年   75篇
  2012年   69篇
  2011年   76篇
  2010年   73篇
  2009年   67篇
  2008年   61篇
  2007年   59篇
  2006年   51篇
  2005年   51篇
  2004年   36篇
  2003年   29篇
  2002年   24篇
  2001年   15篇
  2000年   24篇
  1999年   15篇
  1998年   15篇
  1997年   13篇
  1996年   18篇
  1995年   12篇
  1994年   12篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1967年   1篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
  1934年   3篇
排序方式: 共有1177条查询结果,搜索用时 11 毫秒
991.
The aim of this paper is to investigate the influence of physico-chemical parameters on liquid–liquid dispersion at high dispersed phase concentration in Sulzer SMV™ mixer. Four different oil-in-water systems involving two different surfactants are used in order to evaluate the effect of interfacial tension, densities and viscosities ratio on mean droplets size diameters. Moreover the influence of the dispersed phase concentration on the pressure drop as well as on the droplet size distribution is investigated. Two different droplets size distribution analysis techniques are used in order to compare the resulting Sauter mean diameters. The comparison between residence time in the mixer and surfactants adsorption kinetics leads to take into account the evolution of the interfacial tension between both phases at short times. Finally experimental results are correlated as a function of dimensionless Reynolds and Weber numbers.  相似文献   
992.
High zirconia refractories are composed of a zirconia skeleton surrounded by an intergranular glassy phase. In these materials, zirconia undergoes up to two successive phase transitions during the manufacturing process, c → t then t → m. This leads, after complete cooling, to the formation of microcracks.Preliminary observations have enabled to identify the mechanism mostly responsible for the observed microcracking. In particular, SEM imaging emphasizes the link between the positions of cracks and the presence of distinct crystallographic domains.Thus, our work focuses on the arrangement of the monoclinic and tetragonal domains in zirconia dendrites. The assessment by XRD of the thermal expansion coefficients of zirconia at the lattice scale and the analysis of EBSD maps show that cracking is produced by the thermal expansion mismatch between groups of crystallographic variants. The further reconstruction of both cubic and tetragonal - in the case of a presence of monoclinic zirconia at room temperature - parent grains enables to determine the impact of each transition on the final microstructure and the generated microcracking.  相似文献   
993.
994.
While the benefits of miniaturization on processes have been widely demonstrated, its impact on microfluidics and local mechanisms such as mass transfer is still little understood. The coupling between reaction and mass transfer in microchannels is simulated for liquid‐liquid slug flow. First, the extrapolation to confined flow of the classical model used to calculate interfacial mass fluxes in reactive infinite media was studied. This model consists in estimating transferred fluxes between two phases as a function of the enhancement factor E. Its expression depends on the model used to represent interfacial mass transfer. In infinite media, Lewis and Whitman's stagnant film theory is generally preferred for its simplicity and its reliability. In the case of confined slug flow, the limitation of such a model to predict interfacial fluxes is highlighted. Second, the case of liquid‐liquid competitive consecutive reactions in microchannels is considered. The unfavorable impact of the length between droplets on selectivity is emphasized. This is a direct consequence of mass‐transport mechanisms in microchannels. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   
995.
Poly(L ‐lactic acid) (PLA) films are in use for various types of food packaging; however, a wider range of applications would be possible if the barrier properties of these films could be improved. To make such improvements, combinations of PLA with two nanofillers, laurate‐intercalated Mg‐Al layered double hydroxide (LDH‐C12) and a cationic organomodified montmorillonite (MMT) clay (Cloisite® 30B), were investigated. The dispersion of these fillers in PLA by melt processing was explored using two methods, either by mixing the nanofillers with PLA granulate immediately before extrusion or by preparation and subsequent dilution of PLA‐nanofiller masterbatches. After melt processing of these materials, PLA molecular weight, thermal stability, film transparency, morphology, and permeability characteristics were determined. Direct addition of LDH‐C12 drastically reduced the PLA molecular weight. Although this reduction in molecular weight was still very significant, it was less when a PLA/LDH‐C12 masterbatch was processed. In contrast, there was no significant reduction in PLA molecular weight when processing with Cloisite® 30B. However, film transparency was compromised when either LDH or MMT nanofillers were used. Evidence from DSC analyses showed a significant increase in heat of fusion when LDH‐C12 was dispersed in PLA compared with Cloisite® 30B, likely indicating a difference in nucleating properties. Complementary optical purity analyses suggested that racemization as a result of processing could influence the PLA crystallinity as determined by DSC in certain cases. A reduction in thermal stability when incorporating LDH‐C12 could be a direct result of PLA molecular weight reduction. XRD and TEM analyses showed that both Cloisite® 30B‐ and LDH‐C12‐based PLA composites yielded exfoliated and intercalated morphologies, but nanofiller agglomeration was also seen when LDH‐C12 was used. PLA/Cloisite® 30B nanocomposite films exhibited significant enhancement in oxygen and water vapor barrier properties, but no such improvement was found in PLA/LDH‐C12 nanocomposite films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
996.
Strongly basic groups such as guanidine moieties are crucial structural elements, but they compromise the drug‐likeness of numerous biologically active compounds, including ligands of G‐protein‐coupled receptors (GPCRs). As part of a project focused on the search for guanidine bioisosteres, argininamide‐type neuropeptide Y (NPY) Y2 receptor (Y2R) antagonists related to BIIE0246 were synthesized. Starting from ornithine derivatives, NG‐acylated argininamides were obtained by guanidinylation with tailor‐made mono‐Boc‐protected N‐acyl‐S‐methylisothioureas. The compounds were investigated for Y2R antagonism (calcium assays), Y2R affinity, and NPY receptor subtype selectivity (flow cytometric binding assays). Most of the NG‐substituted (S)‐argininamides showed Y2R antagonistic activities and binding affinities similar to those of the parent compound, whereas NG‐acylated or ‐carbamoylated analogues with a terminal amine were superior (Y2R: Ki and KB values in the low nanomolar range). This demonstrates that the basicity of the compounds, although 4–5 orders of magnitude lower than that of guanidines, is sufficient to form key interactions with acidic amino acids of the Y2R. The acylguanidines bind with high affinity and selectivity to Y2R over the Y1, Y4, and Y5 receptors. As derivatization of the amino group is tolerated, these compounds can be considered building blocks for the preparation of versatile fluorescent and radiolabeled pharmacological tools for in vitro studies of the Y2R. The results support the concept of bioisosteric guanidine–acylguanidine exchange as a broadly applicable approach to retain pharmacological activity despite decreased basicity.  相似文献   
997.
DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence-based throughput screening by using a short DNA duplex immobilized on 96-well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC(50) values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure-activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5-azacytidine.  相似文献   
998.
Micelles have been prepared by mixing poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) homopolymers in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Further aggregation of the accordingly formed complexes results in micelles stabilized by a corona of PS blocks. The influence of the relative lengths of the different blocks and of the quality of the solvent towards the complexes on the micellar characteristic features is studied. Soluble, non-aggregating, complexes have been observed in DMF, provided that the complexes are sufficiently small. In all other cases, the complexes were insoluble and aggregated in micelles. The size of those micelles depends strongly on the length of the P4VP blocks but only weakly on the PAA length.  相似文献   
999.
1000.
Directional unsteady-state solidification experiments were performed with hypermonotectic Al–5.0 wt%Bi and 7.0 wt%Bi alloys. Thermal parameters such as the growth rate (v) and the thermal gradient (G) were experimentally determined by cooling curves recorded along the casting length. The predominant Bi-rich phase was characterized by droplets embedded in the aluminum matrix. Both the interphase spacing (λ) and the Bi-rich particles diameter (d) were measured along the casting length. These microstructural features were correlated to the solidification thermal parameters: growth rate, cooling rate and thermal gradient. An experimental law expressing λ as a function of both G and v was found to better represent the growth of hypermonotectic Al–Bi alloys. Moreover, it was found that the interphase spacing decreases with increasing alloy bismuth content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号