首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   73篇
  国内免费   1篇
电工技术   18篇
综合类   3篇
化学工业   479篇
金属工艺   27篇
机械仪表   32篇
建筑科学   80篇
矿业工程   1篇
能源动力   41篇
轻工业   171篇
水利工程   15篇
石油天然气   1篇
无线电   118篇
一般工业技术   295篇
冶金工业   306篇
原子能技术   25篇
自动化技术   226篇
  2023年   24篇
  2022年   35篇
  2021年   42篇
  2020年   30篇
  2019年   28篇
  2018年   39篇
  2017年   31篇
  2016年   49篇
  2015年   43篇
  2014年   45篇
  2013年   78篇
  2012年   73篇
  2011年   90篇
  2010年   69篇
  2009年   72篇
  2008年   69篇
  2007年   62篇
  2006年   58篇
  2005年   38篇
  2004年   37篇
  2003年   42篇
  2002年   38篇
  2001年   33篇
  2000年   25篇
  1999年   31篇
  1998年   98篇
  1997年   62篇
  1996年   58篇
  1995年   30篇
  1994年   37篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   16篇
  1989年   11篇
  1988年   16篇
  1987年   18篇
  1986年   12篇
  1985年   16篇
  1983年   15篇
  1982年   14篇
  1981年   13篇
  1980年   12篇
  1979年   15篇
  1978年   22篇
  1977年   18篇
  1976年   24篇
  1975年   9篇
  1974年   9篇
  1973年   11篇
排序方式: 共有1838条查询结果,搜索用时 15 毫秒
51.
Sediments filling reservoirs is a common problem in the world today, with an estimated 1% of the capacity of hydropower reservoirs being lost annually through sedimentation. One of the most used techniques for reducing this problem is reservoir flushing. During a flood, the water level is drawn down, causing increased velocities, therefore facilitating erosion and sediment transport. During the flushing, water from the reservoir will be lost, resulting in significant economic implications for the reservoir owner. The success of reservoir flushing depends on several parameters, including water discharge, sediment properties and reservoir geometry. This study describes the use of Computational Fluid Dynamics (CFD) as a modern method to predict the reservoir flushing process. A three‐dimensional numerical model (SSIIM 2), with an adaptive, non‐orthogonal and unstructured grid has been used. Through the application of special modified algorithms (e.g., wetting/drying, free water surface), numerical modelling of sediment movement can be an alternative for planning and optimizing the flushing process for complex reservoir geometries. The numerical model was tested against data from a physical model study of the Kali Gandaki hydropower reservoir in Nepal. The total quantity of flushed out sediments, and the bed deformation in six cross‐sections, were compared, highlighting a good correspondence between the results. These include the cross‐sectional shape of a 90‐degree bend, for which secondary currents influenced the results. The study indicates that numerical models might become a useful tool for reservoir flushing predictions.  相似文献   
52.
The collective dislocation behavior near a crack tip in a ductile layer sandwiched between two brittle solids is analyzed via two-dimensional dislocation dynamics (DD) simulations that incorporate a cohesive zone (CZ) model. The cohesive crack tip is treated as part of a much larger finite crack confined in the ductile layer. The underlying boundary value problem is formulated with a set of boundary integral equations and numerically evaluated with a collocation method. The fracture energy of the layered composite material is shown to be strongly correlated with the layer thickness and is directly influenced by the cohesive strength of the ductile layer (Hsia KJ et al. (1994) J Mech Phys Solids 6 877–896).  相似文献   
53.
54.
A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to be analyzed by this model, including features created by high-speed random switching, depending on the carrier configuration in and around the QD pair, between the dipole-dipole split states and the nonsplit states to give double peaks at both of the QDs.  相似文献   
55.
High hydrostatic pressure (HHP) becomes more and more interesting for life science research, since it can be employed to inactivate various cells. To directly monitor "cells under pressure," the development of an optical high-pressure chamber is required. Therefore, an optical pressure chamber that can be used for up to 300 MPa was constructed. This chamber has already been described as a tool for in situ observation of dynamic changes of microscopic structures in bright field as well as phase contrast. In combination with an inverted microscope, we obtained brilliant microscopic color pictures with an optical resolution more than 0.56 microm. Here, we demonstrate the capabilities of the HHP cell, in combination with epifluorescence microscopy. Using a nonadherent human B-cell line (Raji, ATCC CCL 86), stained with the fluorescent dyes propidium iodide, Hoechst 33342, or dihexyloxacarbocyanine iodide, we were able to show that the system is suitable to perform fluorescence microscopic analyses, with pressures up to 300 MPa, with viable mammalian cells.  相似文献   
56.
During oxidative ladle refining (OLR) of silicon, the metal surface is partly oxidized, resulting in the formation of a condensed silica fume (SiO2). This fugitive emission of silica represents a potential health hazard to the workers in the silicon and ferrosilicon industry. In the current work, industrial measurement campaigns aimed at recording the fume generation during OLR were performed at the Elkem Salten plant in Norway. The measured amounts of silica produced were 2.5–5.1?kg/h, depending on the gas flow rate in the refining process. The rate of silica production correlates with the total flow rate and amount of air in the purge gas, and increases as the flow rate increases. The results of this work suggest that fume generation during OLR primarily results from oxidation of the exposed metal surface, with oxygen transport from the surrounding atmosphere to the metal surface being the limiting factor. Other identified mechanisms of SiO2 formation were splashing of the metal and/or oxidation of SiO gas carried with the refining purge gas.  相似文献   
57.
Hydrogen as a secondary energy carrier promises a large potential as a long term storage for fluctuating renewable energies. In this sense a highly efficient solar hydrogen generation is of great interest especially in southern countries having high solar irradiation. The patented Hydrogen Concentrator (HyCon) concept yields high efficiencies combining multi-junction solar cells with proton exchange (PEM) membrane water electrolysis. In this work, a special PEM electrolysis cell for the HyCon concept was developed and investigated. It is shown that the purpose-made PEM cell shows a high performance using a titanium hybrid fiber sinter function both as a porous transport layer and flow field. The electrolysis cell shows a high performance with 1.83 V at 1 A/cm2 and 24 °C working under natural convection with a commercially available catalyst coated membrane. A theoretical examination predicts a total efficiency for the HyCon module from sunlight to hydrogen of approximately 19.5% according to the higher heating value.  相似文献   
58.
Besides their direct impact on the respective correlated color temperature, the extinction coefficient and the quantum effi- ciency of the phosphor also have tremendous impact on the thermal load of the color conversion elements of phosphor converted LEDs under operation. Because of the low thermal conductivity of the silicone matrix in which the phosphor particles are typically embedded, the by far highest temperatures within the LED assembly are reached within the color conversion element. Based on a combined optical and thermal simulation procedure we show that in particular a larger value for the extinction coefficient might have a beneficial impact on the resulting thermal load.  相似文献   
59.
Exact knowledge of natural gas composition is essential in custody transfer to determine the energy content of the delivery. However, for liquefied natural gas (LNG), a reliable composition determination is difficult. Here, we describe the design of a laboratory-scale reference liquefier that enables the validation and calibration of optical spectroscopy sensors by providing them with a sample of metrologically traceable composition. Hence, it is crucial to avoid fractionation of the sample during liquefaction. This is realized by supercritical liquefaction of a reference gas mixture in conjunction with a special vapor–liquid-equilibrium (VLE) cell. As this is a demanding high-pressure application, low-pressure condensation as liquefaction method was also assessed. Through experimental investigations and VLE calculations, preservation of the composition of the produced liquid sample during condensation was studied. We conclude that under optimized conditions, validation, and calibration measurements of optical sensors can be performed on condensed liquids, which, however, needs further confirmation.  相似文献   
60.
In this paper, we discuss various philosophical aspects of the hyperstructure concept extending networks and higher categories. By this discussion, we hope to pave the way for applications and further developments of the mathematical theory of hyperstructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号