首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   6篇
电工技术   4篇
化学工业   33篇
金属工艺   18篇
机械仪表   3篇
建筑科学   7篇
能源动力   6篇
轻工业   5篇
无线电   21篇
一般工业技术   17篇
冶金工业   9篇
自动化技术   12篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   7篇
  2013年   12篇
  2012年   9篇
  2011年   8篇
  2010年   10篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有135条查询结果,搜索用时 5 毫秒
11.
12.
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.  相似文献   
13.
The growth of wireless communication toward fifth generation will lead to the existence of number of access technologies to provide seamless connectivity and form heterogeneous network environment. Earlier, there was single access technology to run applications, but 5G will have heterogeneous network environment and provide separate network for each application. As compared with 4G, 5G will provide increase in data rate, decrease in delay, increase in quality of service, and so on because of its various enabling technologies. Therefore, for each application, selection of best access network via its enabling technology is an important task. This selection is done either at user terminal side or at network operator side by combining preferences for network attributes and network parameters. In this paper, to enjoy 5G, selection is done in a heterogeneous networks environment for enabling technologies like device‐to‐device communication, spectrum sharing, enhancing quality of experience, energy efficiency, and so on. This selection is done via optimization techniques for a fixed duration video clip that is to be transmitted from a device running low in battery. The selection environment composed of UMTS, WLAN1, and WLAN2 as available networks. The simulation results show that the network selected for each enabling technology supports various features of 5G. Also, error analysis of selection results is done using confidence interval estimate at 90%, 92%, and 95% confidence level. From results obtained, it is seen that different optimization techniques used to access network for different enabling technologies (providing 5G features) prove to be useful for future 5G network.  相似文献   
14.
Dopant‐free hole transport materials (HTMs) are essential for commercialization of perovskite solar cells (PSCs). However, power conversion efficiencies (PCEs) of the state‐of‐the‐art PSCs with small molecule dopant‐free HTMs are below 20%. Herein, a simple dithieno[3,2‐b:2′,3′‐d]pyrrol‐cored small molecule, DTP‐C6Th, is reported as a promising dopant‐free HTM. Compared with commonly used spiro‐OMeTAD, DTP‐C6Th exhibits a similar energy level, a better hole mobility of 4.18 × 10?4 cm2 V?1 s?1, and more efficient hole extraction, enabling efficient and stable PSCs with a dopant‐free HTM. With the addition of an ultrathin poly(methyl methacrylate) passivation layer and properly tuning the composition of the perovskite absorber layer, a champion PCE of 21.04% is achieved, which is the highest value for small molecule dopant‐free HTM based PSCs to date. Additionally, PSCs using the DTP‐C6Th HTM exhibit significantly improved long‐term stability compared with the conventional cells with the metal additive doped spiro‐OMeTAD HTM. Therefore, this work provides a new candidate and effective device engineering strategy for achieving high PCEs with dopant‐free HTMs.  相似文献   
15.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   
16.
High-yield production of graphene by liquid-phase exfoliation of graphite   总被引:11,自引:0,他引:11  
Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.  相似文献   
17.
High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.  相似文献   
18.
Imprinted silver nanovoid arrays are investigated via angle-resolved reflectometry to demonstrate their suitability for plasmonic light trapping. Both wavelength-?and subwavelength-scale nanovoids are imprinted into standard solar cell architectures to achieve nanostructured metallic electrodes which provide enhanced absorption for improving solar cell performance. The technique is versatile, low-cost and scalable and can be applied to a wide range of organic semiconductors. Absorption features which are independent of incident polarization and weakly dependent on incident angle reveal localized plasmonic modes at the structured interface. Metallic nanostructure-PCPDTBT:PCBM samples demonstrate absorption enhancements of up to 40%. The structured interface provides light trapping, which boosts absorption at wavelengths where the semiconductors absorb poorly.  相似文献   
19.
In the current investigation, Cr2O3–50% Al2O3 coating was deposited on ASTM-SA213-T-22 boiler steel and Fe-based superalloy Superfer 800H by D-gun spray process. The high-temperature corrosion performance of the coated as well as bare alloys was evaluated in Na2SO4–60%V2O5 molten salt, an aggressive environment at 900 °C under cyclic conditions. The kinetics of the corrosion were analyzed by the change in weight measurements which were taken after each cycle (i.e., 1-h heating in a tube furnace followed by 20-min cooling in ambient air) for a total period of 50 cycles. The X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray analysis techniques were used for the analysis of corrosion products. During investigations, it was found that both the selected bare alloys have suffered intensive spallation in the form of removal of their oxide scales, which may be attributed to the formation of non-protective Fe2O3-dominated oxide scales, whereas the coated alloys have shown lesser weight gains along with better adhesiveness of the oxide scales with the substrate till the end of the experiment. The oxides of chromium and aluminum were the main phases revealed in the oxide scales of the coated specimens, which are reported to be protective against the hot corrosion.  相似文献   
20.
In the present work, nanocrystalline FeAl and FeAl–Al2O3 composite were synthesized by high energy ball milling and subsequent compaction by spark plasma sintering. Microstructural changes during all stages of processing are studied using X-ray analysis. After 20 h of milling, the disordered FeAl and some amount of Fe rich solid solution was obtained in both of these compositions. Subsequent heat treatment results in formation of ordered FeAl. However, disordering of FeAl was observed in both compositions after spark plasma sintering. Nanocrystallinity is retained in both the compositions even after sintering at high temperature of 1,000 °C. Very high hardness of ~575 HV1 and ~600 HV1 was exhibited by FeAl and FeAl–Al2O3 composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号