首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   9篇
化学工业   80篇
金属工艺   3篇
建筑科学   5篇
能源动力   4篇
轻工业   17篇
石油天然气   2篇
无线电   3篇
一般工业技术   37篇
冶金工业   6篇
自动化技术   13篇
  2023年   2篇
  2022年   23篇
  2021年   26篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   7篇
  2014年   8篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
91.
This article reports a comparative experimental study of the hygroscopic and mechanical behaviors of electrospun polybenzimidazole (PBI) nanofiber membranes and solution-cast PBI films. As-electrospun nonwoven PBI nanofiber mats (with the nanofiber diameter of ~250 nm) were heat-pressed under controlled temperature, pressure and duration for the study; lab-made solution-cast PBI films and commercially available PBI films (the PBI Performance Product Inc., Charlotte, NC) were used as the control samples. Thermogravimetric and microtensile tests were utilized to characterize the hygroscopic (moisture absorption) and mechanical properties of the PBI nanofiber membranes at varying heat-pressing conditions, which were further compared to those of solution-cast PBI films. Experimental results indicated that the PBI nanofiber membranes carried slightly higher thermal stability and less hygroscopic properties than those of solution-cast PBI films. In addition, heat-pressing conditions significantly influenced the mechanical properties of the resulting PBI nanofiber membranes. The stiffness and tensile strength increase with increasing either the heat-pressing pressure or duration, and relevant mechanisms were explored. The present study provides a rational understanding of the hygroscopic and mechanical behaviors of electrospun PBI nanofiber membranes and solution-cast PBI films that are beneficial to their reliable cutting-edge applications in high-temperature filtration, polymer electrolyte membranes (PEMs), etc.  相似文献   
92.
Red fluorescent genetically encoded calcium indicators (GECIs) have expanded the available pallet of colors used for the visualization of neuronal calcium activity in vivo. However, their calcium-binding domain is restricted by calmodulin from metazoans. In this study, we developed red GECI, called FRCaMP, using calmodulin (CaM) from Schizosaccharomyces pombe fungus as a calcium binding domain. Compared to the R-GECO1 indicator in vitro, the purified protein FRCaMP had similar spectral characteristics, brightness, and pH stability but a 1.3-fold lower ΔF/F calcium response and 2.6-fold tighter calcium affinity with Kd of 441 nM and 2.4–6.6-fold lower photostability. In the cytosol of cultured HeLa cells, FRCaMP visualized calcium transients with a ΔF/F dynamic range of 5.6, which was similar to that of R-GECO1. FRCaMP robustly visualized the spontaneous activity of neuronal cultures and had a similar ΔF/F dynamic range of 1.7 but 2.1-fold faster decay kinetics vs. NCaMP7. On electrically stimulated cultured neurons, FRCaMP demonstrated 1.8-fold faster decay kinetics and 1.7-fold lower ΔF/F values per one action potential of 0.23 compared to the NCaMP7 indicator. The fungus-originating CaM of the FRCaMP indicator version with a deleted M13-like peptide did not interact with the cytosolic environment of the HeLa cells in contrast to the metazoa-originating CaM of the similarly truncated version of the GCaMP6s indicator with a deleted M13-like peptide. Finally, we generated a split version of the FRCaMP indicator, which allowed the simultaneous detection of calcium transients and the heterodimerization of bJun/bFos interacting proteins in the nuclei of HeLa cells with a ΔF/F dynamic range of 9.4 and a contrast of 2.3–3.5, respectively.  相似文献   
93.
94.
95.
96.
97.
98.
This paper reports on the results of investigations into the rheological properties of gels that are prepared by aging sols based on water-alcohol solutions of tetraethoxysilane (TEOS) modified by a number of metal salts and organic polyhydroxyl compounds, such as glycerol, poly(ethylene glycol) (PEG-300), and hyperbranched aliphatic complex polyol polyethers (HBP-49, HBP-64). It is demonstrated that the strength of the gels formed can be controlled using these additives.  相似文献   
99.
100.
The surface of multi-walled carbon nanotubes (MWCNTs) was modified to introduce acidic groups in either covalent or van der Waals interaction bonding environments to establish cross-linking sites with a host polymer. Nanocomposites based on a polyurethane matrix (PU) containing chemically functionalised multi-walled carbon nanotubes (MWCNTs) have been shown to alter its mechanical performance depending on the nature of the surface functional groups on MWCNTs, which correlates to the type of bonding interaction of the surface group and also the dispersibility of MWCNTs and their influence on the domain structure of polyurethane. The stress at break for nanocomposites containing 0.25 wt% of acid-oxidised MWCNTs (MWCNT-ox), bearing covalently attached carboxylic, lactone and phenolic groups, was twice that of the native PU and Young’s Modulus for the nanocomposites increased by four times. Whereas when hemin, which contains carboxylic functionality, was immobilised to the surface of pure MWCNTs, the improvement in Young’s Modulus was only around twice that of pure PU. Differences in the disaggregation of MWCNTs into PU were observed between the samples as well as variation of the native domain structure of PU. The results also infer that the purification of MWCNTs from acid-oxidative lattice fragments (fulvic acids) is vital prior to conducting surface chemistry and polymerisation in order to ensure maximum mechanical performance enhancement in their reinforcement of the host polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号