首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   1篇
化学工业   19篇
金属工艺   5篇
能源动力   2篇
水利工程   1篇
石油天然气   28篇
无线电   9篇
一般工业技术   51篇
  2024年   4篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   9篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
31.
    
Low-cost flexible organic light-emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid-state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self-assembled 2D arrays of CDs derived from waste material, viz., human hair. High-performance CDs with a quantum yield (QY) of 87%, self-assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10−1 cm2 V−1 s−1) and significant reduction in solid-state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)-coated glass and ITO-coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole-injection layer. The flexible OLED device exhibits a stable, voltage-independent blue/cyan emission with a record maximum luminescence of 350 cd m−2, whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m−2. This work sets up a platform to develop next-generation OLED displays using CD emitters derived from the biowaste material.  相似文献   
32.
Regeneration of Used Lubricating Oils   总被引:2,自引:0,他引:2  
  相似文献   
33.
Z.L. Tsakadze  K. Ostrikov  S. Xu 《Carbon》2007,45(10):2022-2030
The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H2 + CH4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.  相似文献   
34.
Ostrikov KK  Seo DH  Mehdipour H  Cheng Q  Kumar S 《Nanoscale》2012,4(5):1497-1508
Three case studies are presented to show low-temperature plasma-specific effects in the solution of (i) effective control of nucleation and growth; (ii) environmental friendliness; and (iii) energy efficiency critical issues in semiconducting nanowire growth. The first case (related to (i) and (iii)) shows that in catalytic growth of Si nanowires, plasma-specific effects lead to a substantial increase in growth rates, decrease of the minimum nanowire thickness, and much faster nanowire nucleation at the same growth temperatures. For nucleation and growth of nanowires of the same thickness, much lower temperatures are required. In the second example (related to (ii)), we produce Si nanowire networks with controllable nanowire thickness, length, and area density without any catalyst or external supply of Si building material. This case is an environmentally-friendly alternative to the commonly used Si microfabrication based on a highly-toxic silane precursor gas. The third example is related to (iii) and demonstrates that ZnO nanowires can be synthesized in plasma-enhanced CVD at significantly lower process temperatures than in similar neutral gas-based processes and without compromising structural quality and performance of the nanowires. Our results are relevant to the development of next-generation nanoelectronic, optoelectronic, energy conversion and sensing devices based on semiconducting nanowires.  相似文献   
35.
36.
The results of numerical simulation of the equilibrium parameters of a low pressure nanopowder-generating discharge in silane for the plasma enhanced chemical vapor deposition (PECVD) of nanostructured silicon-based films are presented. It is shown that a low electron temperature and a low density of negative SiH3 ions are favorable for the PECVD process. This opens a possibility to predict the main parameters of the reactive plasma and plasma-nucleated nanoparticles, and hence, to control the quality of silicon nanofilms.  相似文献   
37.
K. Ostrikov 《Vacuum》2008,83(1):4-10
This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.  相似文献   
38.
The atmospheric pressure plasma jet (APPJ) was used to enhance the sensitivity of industrially important polyaniline (PANI) for detection of organic vapors from amides. The gas sensing mechanism of PANI is operating on the basis of reversible protonation or deprotonation, whereas the driving force to improve the sensitivity after plasma modifications is unknown. Herein we manage to solve this problem and investigate the sensing mechanism of atmospheric plasma treated PANI for vapor detection of amides using urea as a model. The results from various analytical techniques indicate that the plausible mechanism responsible for the improved sensitivity after plasma treatment is operating through a cyclic transition state formed between the functional groups introduced by plasma treatment and urea. This transition state improved the sensitivity of PANI towards 15 ppm of urea by a factor of 2.4 times compared to the non-treated PANI. This plasma treated PANI is promising for the improvement of the sensitivity and selectivity towards other toxic and carcinogenic amide analytes for gas sensing applications such as improving material processing and controlling food quality.
  相似文献   
39.
Special features of plastic strain in amorphous iron-base alloys deformed locally in the process of isochronous annealing are studied. It is shown that two types of defect appear on the surface near stress concentrator, namely, shear bands in the form of semirings and in the form of rays. The general tendency of the behavior of shear bands in annealing is determined. As a rule, the process of formation and evolution of semiring shear bands intensifies inconsiderably at low annealing temperatures and decelerates abruptly after 600°C.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号