首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   15篇
电工技术   3篇
化学工业   68篇
金属工艺   6篇
机械仪表   4篇
建筑科学   11篇
矿业工程   1篇
能源动力   6篇
轻工业   15篇
水利工程   4篇
石油天然气   1篇
无线电   27篇
一般工业技术   68篇
冶金工业   36篇
自动化技术   36篇
  2023年   5篇
  2022年   8篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   12篇
  2017年   15篇
  2016年   6篇
  2015年   4篇
  2014年   14篇
  2013年   11篇
  2012年   14篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   10篇
  1997年   9篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
排序方式: 共有286条查询结果,搜索用时 296 毫秒
51.

In this study, we report the fabrication of cadmium-doped indium sulfide thin films (In2S3:Cd) using a low-cost nebulizer-aided spray pyrolysis process at 350 °C on glass substrates for photo-sensing applications. The impact of 0, 2, 4, and 8 wt% cadmium concentrations on the structure, morphology, optical properties, and photo-sensing capabilities of In2S3 thin films were examined systematically. From X-ray diffraction (XRD) analysis, the major peak is located in the (103) plane for all Cd-doped In2S3 thin film samples, and the maximum crystallite size for the 4 wt% sample is 59 nm. The field emission scanning electron microscope (FESEM) image revealed a homogenous large-grained surface of Cd-doped In2S3 film that completely covered the substrate. UV–Vis absorption analysis demonstrated good absorption for all thin film samples in the visible and ultraviolet regions of the electromagnetic spectrum, particularly, the 4% Cd-doped concentration showed excellent absorption as is observed from Tauc relation. The highest PL intensity at 680 nm was observed for the sample coated with 4 wt% of Cd. Under UV light, the IV behavior depicts a light current of 1.06?×?10–6 A for a 5 V bias voltage. The In2S3: Cd (4%) sample had the highest responsivity of 2.12?×?10?1A/W and a detectivity of 1.84?×?1011 Jones, with a high EQE of 50%. The study manifests that the developed Cd (4%)-doped In2S3 thin film sample might be better suited for the application of photodetectors.

  相似文献   
52.
2D hybrid organic–inorganic perovskites are valued in optoelectronic applications for their tunable bandgap and excellent moisture and irradiation stability. These properties stem from both the chemical composition and crystallinity of the layer formed. Defects in the lattice, impurities, and crystal grain boundaries generally introduce trap states and surface energy pinning, limiting the ultimate performance of the perovskite; hence, an in-depth understanding of the crystallization process is indispensable. Here, a kinetic and thermodynamic study of 2D perovskite layer crystallization on transparent conductive substrates are provided—fluorine-doped tin oxide and graphene. Due to markedly different surface structure and chemistry, the two substrates interact differently with the perovskite layer. A time-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor the crystallization on the two substrates. Molecular dynamics simulations are employed to explain the experimental data and to rationalize the perovskite layer formation. The findings assist substrate selection based on the required film morphology, revealing the structural dynamics during the crystallization process, thus helping to tackle the technological challenges of structure formation of 2D perovskites for optoelectronic devices.  相似文献   
53.
Mixing time studies have been carried in a 0.3m diameter and 0.9m tall vessel equipped with three impellers. Conductivity measurement technique has been used for the measurements of mixing time. Effect of the various parameters i.e. tracer density, tracer volume, speed of rotation and impeller combination on mixing time has been studied for two impeller combinations used viz. PTD‐PTD‐PTD and PTD‐PTD‐DT. A compartment model (with one fitted parameter, the exchange flow rate QE) with single compartment per agitation stage has been used to predict the conductivity response and the exchange coefficients are calculated from the model parameter. An attempt has been made to explain the experimental results on the basis of the liquid phase axial dispersion coefficient and cell residence time, calculated from the model parameter QE  相似文献   
54.
The oxide glass system of the composition (10 – x)SrO–xFe2O3–90V2O5, (x = 0, 2, 4, 6 and 8 mol %) were prepared by a standard melt quenching technique. The amorphous nature of the prepared glass was confirmed using X-ray diffraction technique. The infrared spectra of these glasses were recorded over a continuous spectral range (850–1500 cm–1). The density of prepared sample was obtained by the Archimedes principle. The physical parameters of the glasses were also determined with respect to the composition. Density increases from 3.10 to 3.20 g/cm3, whereas the molar volume decreases with the increase in Fe2O3 concentration. In order to study optical properties, absorption spectra were measured at room temperature. Indirect optical energy band gap, optical dielectric constant, refractive index were calculated from optical energy band gap. The refractive index decreases gradually with the increase in Fe2O3 content due to increase of bridging oxygen’s. For temperatures from 300 to 500 K, the dc conductivity increased with the increasing Fe2O3 content. The dielectric properties like dielectric constant, dielectric loss factor and dielectric loss tangent investigated at the room temperature in the frequency range of 10 kHz to 1 MHz decreases with frequency. The dielectric behavior shows strong frequency as well as composition dependence.  相似文献   
55.
56.
The influence of the catalyst precursors (for Li2O and MgO) used in the preparation of Li‐doped MgO (Li/Mg = 0.1) on its surface properties (viz basicity, CO2 content and surface area) and activity/selectivity in the oxidative coupling of methane (OCM) process at 650–750 °C (CH4/O2 feed ratio = 3.0–8.0 and space velocity = 5140–20550 cm3 g−1 h−1) has been investigated. The surface and catalytic properties are found to be strongly affected by the precursor for Li2O (viz lithium nitrate, lithium ethanoate and lithium carbonate) and MgO (viz magnesium nitrate, magnesium hydroxide prepared by different methods, magnesium carbonate, magnesium oxide and magnesium ethanoate). Among the Li–MgO (Li/MgO = 0.1) catalysts, the Li–MgO catalyst prepared using lithium carbonate and magnesium hydroxide (prepared by the precipitation from magnesium sulfate by ammonia solution) and lithium ethanoate and magnesium acetate shows high surface area and basicity, respectively. The catalysts prepared using lithium ethanoate and magnesium ethanoate, and lithium nitrate and magnesium nitrate have very high and almost no CO2 contents, respectively. The catalysts prepared using lithium ethanoate or carbonate as precursor for Li2O, and magnesium carbonate or ethanoate, as precursor for MgO, showed a good and comparable performance in the OCM process. The performance of the other catalysts was inferior. No direct relationship between the basicity of Li‐doped MgO or surface area and its catalytic activity/selectivity in the OCM process was, however, observed. © 2000 Society of Chemical Industry  相似文献   
57.
Alkali metal (viz. Li, Na, K, Rb and Cs) promoted MgO catalysts (with an alkali metal/Mg ratio of 0·1) calcined at 750°C have been compared for their surface properties (viz. surface area, morphology, acidity and acid strength distribution, basicity and base strength distribution, etc.) and catalytic activity/selectivity in the oxidative coupling of methane (OCM) to C2-hydrocarbons at different temperatures (700–750°C), CH4/O2 ratios (4·0 and 8·0) in feed, and space velocities (10320 cm3 g−1 h−1). The surface and catalytic properties of alkali metal promoted MgO catalysts are found to be strongly influenced by the alkali metal promoter and the calcination temperature of the catalysts. A close relationship between the surface density of strong basic sites and the rate of C2-hydrocarbons formation per unit surface area of the catalysts has been observed. Among the catalysts calcined at 750°C, the best performance in the OCM is shown by Li–MgO (at 750°C). © 1997 SCI.  相似文献   
58.
Architectural design of biomaterial structures is essential to reach the full potential of the materials' chemical and biological properties. Clinically, these properties depend on the targeted applications of delivery, such as tissue regeneration, imaging, or cancer. To get an efficient material for biological applications, key properties are needed, such as degradability, low toxicity, cell specificity, relative efficiency, and capability of delivering multiple molecules. In recent years, significant progress has been made through either the design of the material itself (synthetic or natural polymers, dendrimers, crosslinking) or the fabrication technique (nozzle reactor, emulsion, and template). The combination of these materials and techniques results in a large variety of biomaterials that have varied shape and physico–chemical and biological properties. Nevertheless, these inherent properties are not sufficient and interest in discovering and developing new techniques that present these biomaterials in different light is now under focus. A useful strategy to prepare biomaterials with unique and novel architectures is through the use of templates that have defined geometrical features. This holds great promise, especially for the development of hollow structures, such as spheres. The nanoscale structural design of biomaterials via the use of templates and their potential clinical applications are discussed. In addition, the conceptual hurdles that must be overcome to produce applications that are clinically relevant are examined.

  相似文献   

59.
60.
Semi-interpenetrating polymer networks (Semi-IPNs) based on epoxy and unsaturated polyester resin (UPR; added in 5.9 and 11.1 wt %) have been prepared by chemical route. Room temperature curing was attempted using triethylene tetramine as a hardener. Blend with 11.1% UPR is found to exhibit best mechanical properties. Further, blends were also prepared by adding aromatic amines such as diphenylamine (DPA, secondary amine) and benzidine (Bz, primary amine). Structural elucidation of the samples through identification of functional groups was carried out with the help of Fourier transform infra red spectroscopy. Absence of peak at 915 cm−1 (characteristic of epoxy ring) confirmed complete curing in all the blends. The mechanical properties such as hardness, izod impact and tensile strength of blends were compared. The co-cured blends show decrease in shore hardness (≈ 1–6%), while, the izod impact exhibits an opposite trend. Blends with 10% DPA and Bz show an increase in izod impact by 268.6% and 38.8% respectively. Further, the tensile strength is observed to be enhanced by 45% in case of DPA while addition of Bz reduces it by 32.8%. Thermal properties were studied by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analysis. TGA shows no significant change in onset and decomposition temperature but temperature at which it melts is lowered almost by 100–150°C together with the onset temperature (by ≈ 200°C) observed in DSC. Scanning electron micrographs reveal granular nature of the samples. The homogeneity of blends appears to be good. The blends co-cured with DPA are relatively crystalline compared with others. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号