首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   43篇
电工技术   5篇
化学工业   119篇
金属工艺   6篇
机械仪表   9篇
建筑科学   15篇
能源动力   37篇
轻工业   72篇
水利工程   16篇
石油天然气   2篇
无线电   44篇
一般工业技术   71篇
冶金工业   7篇
原子能技术   3篇
自动化技术   65篇
  2024年   2篇
  2023年   11篇
  2022年   13篇
  2021年   27篇
  2020年   27篇
  2019年   24篇
  2018年   50篇
  2017年   37篇
  2016年   36篇
  2015年   26篇
  2014年   23篇
  2013年   43篇
  2012年   21篇
  2011年   27篇
  2010年   20篇
  2009年   21篇
  2008年   10篇
  2007年   10篇
  2006年   11篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
排序方式: 共有471条查询结果,搜索用时 484 毫秒
41.
Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.  相似文献   
42.
Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at − 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes structure was revealed using scanning electron microscope and transmission electron microscope images. Raman spectroscopy was also employed to characterize the nanostructural features and single wall carbon nanotubes were detected.  相似文献   
43.
An efficient procedure for the fabrication of highly conductive carbon nanotube/graphene hybrid yarns has been developed. To start, arrays of vertically aligned multi‐walled carbon nanotubes (MWNT) are converted into indefinitely long MWNT sheets by drawing. Graphene flakes are then deposited onto the MWNT sheets by electrospinning to form a composite structure that is transformed into yarn filaments by twisting. The process is scalable for yarn fabrication on an industrial scale. Prepared materials are characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It is found that the electrical conductivity of the composite MWNT‐graphene yarns is over 900 S/cm. This value is 400% and 1250% higher than electrical conductivity of pristine MWNT yarns or graphene paper, respectively. The increase in conductivity is asssociated with the increase of the density of states near the Fermi level by a factor of 100 and a decrease in the hopping distance by an order of magnitude induced by grapene flakes. It is found also that the MWNT‐graphene yarn has a strong electrochemical response with specific capacitance in excess of 111 Fg?1. This value is 425% higher than the capacitance of pristine MWNT yarn. Such substantial improvements of key properties of the hybrid material can be associated with the synergy of MWNT and graphene layers in the yarn structure. Prepared hybrid yarns can benefit such applications as high‐performance supercapacitors, batteries, high current capable cables, and artificial muscles.  相似文献   
44.
In this work, Functional Fe3O4@ polydopamine nanocomposite (Fe3O4@PDA) with magnetic response and special surface area were successfully assembled utilizing the strong coordination interactions between these two versatile materials. The morphology and size, crystal structure, specific saturation magnetization, chemical structure, and thermal properties were characterized by transmission electron microscopy (TEM), X‐ray diffraction (XRD), vibration magnetometer (VSM), point of zero charge (pHpzc), Fourier infrared (FT‐IR) and thermogravimetric analysis (TGA). The self‐polymerization of dopamine could be completed within 3 days, and Fe3O4 nanoparticles were embedded into PDA polymer. TGA results showed that PDA content of nanocomposite can be up to 51.7 wt% and also showed a significant decrease in the decomposition temperature of PDA from 530 to 270°C in the presence of the Fe3O4 nanoparticles. Through TGA analysis the coating thickness was estimated to be about 0.86 nm that it is well coincident with the measured values using TEM images and XRD analysis. At room temperature by vibrating sample magnetometer (VSM), Fe3O4 and Fe3O4@PDA exhibit superparamagnetic behavior with a saturation moment of 57.87 and 44.7 emu/g, respectively. Furthermore, PZC value reduced for Fe3O4@PDA compared with Fe3O4 nanoparticles and fell from 6.7 to 3.04. J. VINYL ADDIT. TECHNOL., 25:41–47, 2019. © 2018 Society of Plastics Engineers  相似文献   
45.
Compression garments mainly produced from elastic knitted fabrics have attracted many attentions due to their medical care performances. Components’ characteristics of the pressure garments such as yarn and fabric structure affect significantly the pressure applied on the human body. In this paper, it is aimed to simulate the effect of yarn’s mechanical properties as well as fabric structure on mechanical performance of the compression garment. For this purpose, a precise geometrical model for fabric structure is needed by which the pressure applied to the body could be predicted. Accordingly, double jersey knitted fabrics containing elastane weft yarns were produced on an electronic flat knitting machine and the fabric tensile properties were measured in course direction. Using equations governing the fabric structural unit-cell, a real geometric model was created in a finite element software environment. Considering the linear visco-elastic properties for elastane weft yarn, stress-strain curve was extracted. The results obtained from numerical simulation were compared with the experimental data in order to validate the proposed geometrical model. The findings demonstrate a good agreement between experimental and simulation results.  相似文献   
46.
Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties.  相似文献   
47.
48.
City logistics is one of the significant branches of supply chain management, dealing with the logistics and transportation activities in urban areas. This research area has recently appropriated an exponential growth of publications. This paper presents a bibliometric analysis along with a systematic literature review to organise the results of surveying more than 370 papers and research works published since 2010. We identify the top contributing research topics. The most common keywords used in the city logistics literature are referred to in order to propose six research categories identifying the main innovative research perspectives.  相似文献   
49.
50.
The Journal of Supercomputing - The cloud of things (CloudIoT) represents a general system of supporting infrastructure for storing and processing information gathered from smart objects and their...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号