首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2758篇
  免费   116篇
  国内免费   1篇
电工技术   12篇
化学工业   428篇
金属工艺   36篇
机械仪表   30篇
建筑科学   65篇
矿业工程   2篇
能源动力   53篇
轻工业   147篇
水利工程   7篇
石油天然气   3篇
无线电   206篇
一般工业技术   355篇
冶金工业   1106篇
原子能技术   23篇
自动化技术   402篇
  2023年   22篇
  2022年   38篇
  2021年   37篇
  2020年   50篇
  2019年   51篇
  2018年   55篇
  2017年   65篇
  2016年   66篇
  2015年   53篇
  2014年   63篇
  2013年   125篇
  2012年   109篇
  2011年   151篇
  2010年   99篇
  2009年   98篇
  2008年   111篇
  2007年   87篇
  2006年   87篇
  2005年   72篇
  2004年   58篇
  2003年   49篇
  2002年   39篇
  2001年   15篇
  2000年   16篇
  1999年   46篇
  1998年   336篇
  1997年   187篇
  1996年   138篇
  1995年   78篇
  1994年   86篇
  1993年   86篇
  1992年   18篇
  1991年   28篇
  1990年   24篇
  1989年   21篇
  1988年   25篇
  1987年   16篇
  1986年   13篇
  1985年   15篇
  1984年   6篇
  1983年   6篇
  1982年   12篇
  1981年   6篇
  1980年   13篇
  1978年   4篇
  1977年   31篇
  1976年   52篇
  1975年   5篇
  1955年   1篇
  1954年   1篇
排序方式: 共有2875条查询结果,搜索用时 31 毫秒
991.
The analytical potential of radiofrequency pulsed glow discharge optical emission spectrometry (rf‐PGD‐OES) is investigated for quantitative depth profiling analysis of thin‐film solar cells (TFSC) based on hydrogenated amorphous silicon (a‐Si:H). This method does not require sampling at ultra‐high‐vacuum conditions, and so it facilitates higher sample throughput than do reference techniques. In this paper, the determination of compositional depth profiles of a‐Si:H TFSC was performed by resorting to a multi‐matrix calibration procedure. For this purpose, certified reference materials, as well as laboratory standards based on individual layers of doped a‐Si:H, were simultaneously employed to build the analytical calibration curves. Results show that rf‐PGD‐OES allows us to discriminate the different layers of photovoltaic devices: the front contact composed by ZnO:Al2O3 (AZO), the a‐Si:H layer (the B‐doped, intrinsic a‐Si:H and P‐doped films), the AZO/Al back contact and substrate. A good agreement with the nominal values for element concentrations (e.g. 0.4% of H, 1.5% of B and 3.7% of P) and layer thicknesses (in the range of 950 nm for the front contact and 13 nm for the P‐doped a‐Si:H layer) was obtained, demonstrating the ability of rf‐PGD‐OES for a direct, sensitive and high‐depth‐resolution analysis of photovoltaic devices. Moreover, diffusion processes between the coating layers, which could have an important influence on the final efficiency of TFSC, can be identified as well. Hence, the findings support the use of rf‐PGD‐OES as an analysis method in the development of photovoltaic thin films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
992.
The performances of different promoters (CeO2, ZrO2 and Ce0.5Zr0.5O2 solid solution) modified Pd/SiC catalysts for methane combustion are studied. XRD and XPS results showed that Zr4+ could be incorporated into the CeO2 lattice to form Zr0.5Ce0.5O2 solid solution. The catalytic activities of Pd/CeO2/SiC and Pd/ZrO2/SiC are lower than that of Pd/Zr0.5Ce0.5O2/SiC. The Pd/Zr0.5Ce0.5O2/SiC catalyst can ignite the reaction at 240 °C and obtain a methane conversion of 100% at 340 °C, and keep 100% methane conversion after 10 reaction cycles. These results indicate that active metallic nanoparticles are well stabilized on the SiC surface while the promoters serve as oxygen reservoir and retain good redox properties.  相似文献   
993.
We present chemical modification of self assembled monolayers (SAMs) using electron and ion-beam lithographies. We used thiolated polyethylene oxide (PEO) SAMs on gold to fabricate chemically contrasting patterns at the nanoscale. Patterned surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time of flight-secondary ion mass spectrometry (ToF-SIMS). Results showed a chemical modification of surfaces patterned by means of electron beam (e-beam) lithography and a removal of PEO SAMs on the areas treated with the ion beam. The chemical modification of PEO SAMs converted the non-fouling surfaces on fouling surfaces.  相似文献   
994.
995.
Escherichia coli O157:H7, an occasional contaminant of fresh produce, can present a serious health risk in minimally processed leafy green vegetables. A good predictive model is needed for Quantitative Risk Assessment (QRA) purposes, which adequately describes the growth or die-off of this pathogen under variable temperature conditions experienced during processing, storage and shipping. Literature data on behaviour of this pathogen on fresh-cut lettuce and spinach was taken from published graphs by digitization, published tables or from personal communications. A three-phase growth function was fitted to the data from 13 studies, and a square root model for growth rate (μ) as a function of temperature was derived: μ = (0.023*(Temperature-1.20))2. Variability in the published data was incorporated into the growth model by the use of weighted regression and the 95% prediction limits. A log-linear die-off function was fitted to the data from 13 studies, and the resulting rate constants were fitted to a shifted lognormal distribution (Mean: 0.013; Standard Deviation, 0.010; Shift, 0.001). The combined growth-death model successfully predicted pathogen behaviour under both isothermal and non-isothermal conditions when compared to new published data. By incorporating variability, the resulting model is an improvement over existing ones, and is suitable for QRA applications.  相似文献   
996.
In this technical note, we report a new all-solid-state planar reference electrode based on single-walled carbon nanotubes and photocured poly(n-butylacrylate) (poly(nBA)) membrane containing the Ag/AgCl/Cl(-) ion system. Single-walled carbon nanotubes functionalized with octadecylamide (SWCNT-ODA) and deposited by drop-casting onto a disposable screen-printed electrode are an excellent all-solid-state transducer. The novel potentiometric planar reference electrode shows low potential variability (calibration slopes inferior to 2 mV/dec) for a wide range of chemical species (i.e., ions, small molecules, proteins) in a wide calibration range, redox pairs, changes in pH, and changes in ambient light. Potentiometric medium-term signal stability (-0.9 ± 0.2 mV/h) and electrochemical impedance characterization confirm the correct solid contact between the SWCNT-ODA layer and photocured poly(nBA) membrane. Overall, the materials used and the simple fabrication by screen-printing and drop-casting enable a high throughput and highly parallel and cost-effective mass manufacture of the new disposable reference electrode. Moreover, the reference electrode has a long shelf life, a characteristic that can be of special interest in decentralized and multiplexing potentiometric analysis.  相似文献   
997.
998.
We report the coencapsulation of glutathione reductase and disulfide-linked polymer-oligopeptide conjugates into capsosomes, polymer carrier capsules containing liposomal subcompartments. The architecture of the capsosomes enables a temperature-triggered conversion of oxidized glutathione to its reduced sulfhydryl form by the encapsulated glutathione reductase. The reduced glutathione subsequently induces the release of the encapsulated oligopeptides from the capsosomes by reducing the disulfide linkages of the conjugates. This study highlights the potential of capsosomes to continuously generate a potent antioxidant while simultaneously releasing small molecule therapeutics.  相似文献   
999.
One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a series of oligothiophene molecules ("peas"). The physical properties of these peapods are depicted by using aberration-corrected high-resolution transmission electron microscopy, Raman spectroscopy, and other optical methods including steady-state and time-resolved measurements. Visible photoluminescence with quantum yields up to 30% is observed for all the hybrids. The underlying electronic structure is investigated by density functional theory calculations for a series of peapods with different molecular lengths and tube diameters, which demonstrate that van der Waals interactions are the bonding mechanism between the encapsulated molecule and the tube.  相似文献   
1000.
Owing to the high atomic number (Z) of gold element, the gold nanoparticles appear as very promising radiosensitizing agents. This character can be exploited for improving the selectivity of radiotherapy. However, such an improvement is possible only if irradiation is performed when the gold content is high in the tumor and low in the surrounding healthy tissue. As a result, the beneficial action of irradiation (the eradication of the tumor) should occur while the deleterious side effects of radiotherapy should be limited by sparing the healthy tissue. The location of the radiosensitizers is therefore required to initiate the radiotherapy. Designing gold nanoparticles for monitoring their distribution by magnetic resonance imaging (MRI) is an asset due to the high resolution of MRI which permits the accurate location of particles and therefore the determination of the optimal time for the irradiation. We recently demonstrated that ultrasmall gold nanoparticles coated by gadolinium chelates (Au@DTDTPA‐Gd) can be followed up by MRI after intravenous injection. Herein, Au@DTDTPA and Au@DTDTPA‐Gd were prepared in order to evaluate their potential for radiosensitization. Comet assays and in vivo experiments suggest that these particles appear well suited for improving the selectivity of the radiotherapy. The dose which is used for inducing similar levels of DNA alteration is divided by two when cells are incubated with the gold nanoparticles prior to the irradiation. Moreover, the increase in the lifespan of tumor bearing rats is more important when the irradiation is performed after the injection of the gold nanoparticles. In the case of treatment of rats with a brain tumor (9L gliosarcoma, a radio‐resistant tumor in a radiosensitive organ), the delay between the intravenous injection and the irradiation was determined by MRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号