首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   18篇
  国内免费   1篇
电工技术   5篇
化学工业   61篇
金属工艺   10篇
机械仪表   3篇
建筑科学   3篇
能源动力   13篇
轻工业   24篇
水利工程   10篇
石油天然气   1篇
无线电   27篇
一般工业技术   77篇
冶金工业   26篇
原子能技术   5篇
自动化技术   44篇
  2023年   3篇
  2022年   14篇
  2021年   18篇
  2020年   12篇
  2019年   16篇
  2018年   17篇
  2017年   10篇
  2016年   7篇
  2015年   12篇
  2014年   11篇
  2013年   24篇
  2012年   8篇
  2011年   19篇
  2010年   13篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   8篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
51.
Microstructural properties play a key role to affect oil uptake and product quality during frying of foods. The objective of this study was to observe the complex microstructural changes and mass transfer mechanisms in potato disks during frying. The potato disks of 1.65 mm thickness were fried at 190 °C for 0, 20, 40, 60, and 80 s. X‐ray micro‐computed tomography (CT) was used for 3‐dimensional (3D) imaging of microstructure of porous potato disks. Total porosity, pore size distribution, oil content, and air content of potato disks were calculated from resulting 3D data sets. Oil and air content measured by analysis of micro‐CT images followed trends similar to Soxtec and gas pycnometry methods, respectively. Image analysis showed a significant change in pore size distribution as a function of frying time. Frying time was also observed to have an effect on tortuosity, which is an important microstructural fluid transport property. Tortuosity was measured by path length ratio method from 3D data sets obtained from image analysis. A linear inverse relationship was observed between porosity and tortuosity where tortuosity decreased with the increase of porosity. It was also observed that during frying, oil content increased with the decrease of tortuosity. This phenomenon indicated that the lower tortuosity created a less complicated and sinuous path, thus resulting in less resistance to oil penetration. Micro‐CT technique can serve as an effective tool for elucidating microstructure of fried foods, and can provide complementary information to conventional lab techniques.  相似文献   
52.
Significant physical attributes affecting quality of Indian black (CTC) tea   总被引:1,自引:0,他引:1  
In this research work, an attempt was made to discriminate different grades of black crush-tear-curl (CTC) tea based upon their physical attributes such as color of brewed liquor, texture, size and shape of the tea granules obtained by machine vision technique. The principal component analysis (PCA) was applied over two types of data. First, tea samples with seven different quality grades but same mechanical grading and second, samples with same quality grade but nine different mechanical grades (Brokens, Fannings and Dust) were considered for analysis, respectively. The results of PCA showed that best discrimination (100%) in both types of data was given by color attributes only. Correlations among tea samples and physical attributes were determined. Based upon these results it may be concluded that color only attributes are the most significant and sufficient for quantification of tea quality whereas other physical attributes contribute so little to quality estimation that they may be ignored.  相似文献   
53.
Multi-wall carbon nanotubes are grown in a chemical vapor deposition process by using bulk gold and copper substrates as catalysts. Nanotube growth starts from a nanometer-sized roughness on the metal surfaces and occurs in a mechanism where the catalyst particle is either at the tip (Au) or root (Cu) of the growing nanotube. Whereas Au leads to nanotubes with good structural perfection, nanotubes grown from Cu show a higher density of defects. High-resolution transmission electron microscopy shows the bonding between Au and carbon at the metal-nanotube interface whereas no bonds between Cu and carbon occur. Highly mobile Au or Cu atoms adsorb at the growing edge of a carbon nanotube from where diffusion along the nanotube wall can lead to the formation of Au or Cu nanowires inside the central hollow of carbon nanotubes.  相似文献   
54.
The magnetic properties of nano-crystallite cobalt lanthanum ferrite (CoLaxFe2-x O4) with varied quantities of lanthanum (x = 0, 0.1, 0.15, 0.2, 0.25, 0.3) prepared by co-precipitation method have been studied by vibrating sample magnetometer (VSM) and LCR meter. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the size, structure, and morphology of the ferrite samples. The average crystallite size varied from 17.83 nm to 49.99 nm. All the samples, although, in nano range, show significant hysteresis. The saturation magnetization (Ms) values decreased from 60.57 emu/g to 30.15 emu/g. The remanence (MR) fell from 10.85 emu/g to 6.39 emu/g. Doping with lanthanum La3+ ions modulates significantly the magnetic properties of cobalt spinel ferrites without sacrificing the ferromagnetic character.  相似文献   
55.
The paper reports the energization of Hydroxyl‐Terminated Polybutadiene (HTPB) by functionalizing explosophore  NO2 over the HTPB backbone, resulting in the formation of conjugated nitro‐alkene derivative of HTPB. A convenient, inexpensive and efficient “one pot” procedure of synthesizing Nitro‐Functionalized Hydroxyl‐Terminated Polybutadiene (Nitro‐HTPB) is reported. The reaction was carried out with sodium nitrite and iodine. To retain the unique physico‐chemical properties of HTPB, functionalization by  NO2 group was restricted to 10 to 15 % of double bonds. The Nitro‐HTPB was characterized by FTIR, 1H NMR, VPO, DSC, TGA etc. The polymer has shown good thermal stability for practical applications. The kinetic parameters for the decomposition of Nitro‐HTPB at 150–300 °C were obtained from non‐isothermal DSC data.  相似文献   
56.
ABSTRACT

Straight- and multigrade fluids were evaluated in a hydraulic dynamometer that incorporated a pressure-compensated axial piston pump and a fixed displacement axial piston motor. Pump, motor, pressure compensator, and directional control valve internal flow losses were determined under various conditions of pressure, speed, and temperature. Fluid samples were collected before and at various times during the dynamometer experiments, and viscosity measurements were performed to probe for correlations between viscosity, operating time, and system leakage flow losses. The low shear rate viscosities of the multigrade fluids decreased linearly throughout the duration of testing due to polymer degradation. However, system flow losses did not exhibit a statistically significant increase as the multigrade fluids sheared down. The fluids were also characterized by their permanent viscosity loss produced in sonic shear and tapered bearing tests and by their temporary shear thinning measured in an ultra-high-shear viscometer at several temperatures. The effects of these viscous properties were analyzed using an empirical model to identify which measures of viscosity were most correlated with flow loss. The results suggested that the relative contributions of temporary and permanent viscosity loss change as the fluid is used. Further, analysis of torque loss and input power revealed that input power and losses are more useful indicators of the effect of fluids on hydraulic system performance than pump efficiency.  相似文献   
57.
58.
Knowledge of materials' thermal‐transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon‐boundary‐scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap‐emission over excitation‐laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM‐based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal‐transport properties. It is anticipated that this novel technique to enable an efficient single‐cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single‐cell thermal‐transport properties.  相似文献   
59.
To rescue the future from the global energy crisis and to ensure it with clean and economical hydrogen energy, it is an urgency to develop an efficient OER catalyst, which intensely sluggish the kinetic process of hydrogen production. Herein, we have precisely synthesized an efficient, stable, earth-abundant metal-based NiFe2O4/rGO hybrid OER electrocatalysts by a simple solvothermal method. The measurements including XRD, FTIR, XPS, EDS, SEM, and TEM revealed the prominent structural integrity of catalyst with crystal-layered structure. The rich oxidation chemistry of transition metals and substantially active carbon substrate allows tuning of their electronic properties concerning their concentration, composition, and morphology. The effect of different Ni wt.% (0%, 2%, 4%, and 6%) on the morphology of hybrid as well as on electrochemical performance investigated. The protocols like overpotential required to achieve a current density of 10 mA/cm2, Tafel slope, ECSA, RF, EIS, stability was utilized to examine the overall abilities of electrocatalyst in alkaline 1 M KOH solution. The optimized NiFe2O4/rGO hybrid with 2 wt % Ni exhibited the excellent OER performance, which delivers a current density of 10 mA/cm2 at an overpotential of only 302 mV with a small Tafel slope of 63 mV/dec. The high activity of the catalyst is attributed to the synergistic effect of the crystal-layered structure as well as rapid mass-charge transfer. Such, rational design concept of anchoring non-precious metal on carbon in a controlled manner, offering splendid flexibility to tailor electrochemical OER performance. The optimized variations in metal concentration and morphologies, providing a promising route to develop a cost-effective catalyst for advanced energy conversion applications.  相似文献   
60.
Neural Computing and Applications - This paper presents a deep learning architecture modified for resource-constrained environments, called Non-Fully-Connected Network or NFC-Net, based on...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号